欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2017, Vol. 26 ›› Issue (9): 113-120.DOI: 10.11686/cyxb2017029

• 研究论文 • 上一篇    下一篇

PEG介导的柳枝稷叶肉细胞原生质体瞬时表达体系的建立

祁泽文1, 孙鑫博2, 樊波3, 张雪1, 袁建波1, 韩烈保1,*   

  1. 1.北京林业大学草坪研究所,北京 100083;
    2.河北农业大学河北省作物生长调控重点实验室,河北 保定071001;
    3.深圳市园艺园林建设有限公司,广东 深圳518038
  • 收稿日期:2017-01-18 修回日期:2017-03-29 出版日期:2017-09-20 发布日期:2017-09-20
  • 通讯作者: *通信作者Corresponding author. E-mail: hanliebao@163.com
  • 作者简介:祁泽文(1992-),男,江苏连云港人,硕士。E-mail: qizewen0404@163.com
  • 基金资助:
    深圳市科技计划项目(JSGG20160229155434792和JCYJ20160331151245672)资助

Establishment of a gene transient expression system mediated by polyethylene glycol in switchgrass (Panicum virgatum) mesophyll protoplasts

QI Ze-Wen1, SUN Xin-Bo2, FAN Bo3, ZHANG Xue1, YUAN Jian-Bo1, HAN Lie-Bao1,*   

  1. 1.Turfgrass Research Institute, Beijing Forestry University, Beijing 100083, China;
    2.Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding 071001, China;
    3.Shenzhen Horticultural Garden Construction Company, Shenzhen 518038, China
  • Received:2017-01-18 Revised:2017-03-29 Online:2017-09-20 Published:2017-09-20

摘要: 为了建立以PEG介导的柳枝稷叶肉细胞原生质体瞬时表达体系,本研究以柳枝稷 Alamo品种的叶片为材料,通过设计梯度实验确定柳枝稷原生质体分离的最佳条件, 每组梯度实验重复3次, 方案如下:1)对植物培养的时间进行优化。酶解时间固定在8 h, 甘露醇浓度为0.6 mol/L, 将培养了1, 2, 3和4周的黄化苗用作实验材料;2)渗透压优化。选取2周的黄化苗为实验材料, 酶解时间固定在8 h, 甘露醇浓度分别为0.4, 0.5, 0.6, 0.7和0.8 mol/L;3)酶解时间优化。选取2周的黄化苗为实验材料, 甘露醇浓度为0.6 mol/L, 酶解时间分别为6, 7, 8, 9和10 h。通过对比分析发现,苗龄为2周的柳枝稷黄化苗叶片在甘露醇为0.6 mol/L的酶解液中, 黑暗, 28 ℃并裂解8 h后分离的原生质体最为理想。接下来构建了能够在植物细胞内表达GFP-MYB103融合蛋白(GFP为绿色荧光蛋白)的重组质粒LN-OsMYB103, 利用PEG介导法将质粒LN-OsMYB103转化进入柳枝稷原生质体, 并且在激光共聚焦显微镜下观察到了强烈的绿色荧光蛋白信号。该结果表明, 分离的原生质体可以行使正常生物学功能。综上所述, 利用柳枝稷叶片建立了一套完整的柳枝稷叶肉细胞原生质体瞬时表达体系。这将为深入开展柳枝稷的功能基因组学研究奠定了基础。

Abstract: Leaves of Alamo switchgrass (Panicum virgatum) were used as materials to establish a transient expression system for mesophyll protoplasts cells. To determine the optimal conditions to obtain protoplasts from switchgrass, we designed a gradient experiment, with three replicates per treatment. First, we determined the optimal age of plants as the source of material. The leaves of etiolated seedlings grown for 1, 2, 3, and 4 weeks were subjected to enzymolysis for 8 h in a solution containing D-mannitol at 0.6 mol/L. Next, we determined the optimal osmotic pressure by exposing leaf material from 2-week-old etiolated seedlings to solutions containing D-mannitol at 0.4 mol/L, 0.5 mol/L, 0.6 mol/L, 0.7 mol/L and 0.8 mol/L. The optimal duration of enzymolysis was determined by subjecting leaf material from 2-week-old etiolated seedlings to enzymolysis for 6, 7, 8, 9, and 10 h in a solution containing 0.6 mol/L D-mannitol. This series of assays showed that the optimal conditions to isolate protoplasts were as follows: 2-week-old etiolated seedlings as the source material, and enzymatic hydrolysis in a solution containing 0.6 mol/L D-mannitol in the dark for 8 h at 28 ℃. The protoplasts obtained using this method were transformed with the plasmid LN-OsMYB103 by a polyethylene glycol-mediated method, and strong green fluorescence was detected by laser confocal microscopy. These results indicated that the protoplasts retained normal biological functions. In summary, we established an integrated transient expression system for protoplasts obtained from switchgrass leaves. This method will be very useful for functional genomics research on switchgrass.