欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2018, Vol. 27 ›› Issue (1): 1-13.DOI: 10.11686/cyxb2017117

• 研究论文 • 上一篇    下一篇

高寒草甸草原净初级生产力对气候变化响应的模拟

耿元波1, *, 王松1, 2, 胡雪荻1, 2   

  1. 1.中国科学院地理科学与资源研究所,北京 100101;
    2.中国科学院大学,北京 100049
  • 收稿日期:2017-03-16 修回日期:2017-05-17 出版日期:2018-01-20 发布日期:2018-01-20
  • 通讯作者: E-mail:gengyb@igsnrr.ac.cn
  • 作者简介:耿元波(1969-),男,新疆霍城人,副研究员,博士。 E-mail:gengyb@igsnrr.ac.cn
  • 基金资助:
    国家自然科学基金项目(41071138)资助

Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model

GENG Yuan-bo1, *, WANG Song1, 2, HU Xue-di1, 2   

  1. 1.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-03-16 Revised:2017-05-17 Online:2018-01-20 Published:2018-01-20

摘要: 利用1957-2014年气象数据和1998-2014年实测数据驱动CENTURY模型模拟海北高寒草甸草原生态系统地上净初级生产力(ANPP)的动态变化,并利用典型浓度路径RCP4.5和RCP8.5情景下5个大气环流模型的气候情景数据来模拟未来气候变化和CO2浓度变化对草地生态系统ANPP的影响。结果表明:1)研究地点1998-2014年的ANPP观测值与模拟值变化趋势吻合度较高,Pearson相关性系数为0.67,均方根误差为19.62 g·m-2,CENTURY模型适用于模拟气候变化对高寒草甸草原影响的研究。2)过去50多年,高寒草甸草原的年平均最低气温、最高气温和年平均气温都呈极显著的波动上升趋势(P<0.01),年降水量年际波动特征比较明显,降水主要集中在植被的生长季。过去50多年,高寒草甸草原ANPP平均值达到271 g·m-2,总体变化趋势为增加,但变化趋势不显著(P>0.05)。3)与基准时段(2001-2014年)相比,高寒草甸草原未来2030s(2015-2040年)、2050s(2041-2070年)、2080s(2071-2099年)时段多模型年平均降水量、年平均温度、年平均最低和最高温度变化率均为正值。不考虑CO2肥效作用下,高寒草甸草原多模型平均ANPP在RCP4.5和RCP8.5情景下分别增加2.21%,11.53%,17.78%和8.34%,21.68%,40.32%;考虑CO2肥效作用下,高寒草甸草原多模型平均ANPP在RCP4.5和RCP8.5情景下分别增加2.89%,14.29%,24.28%和11.57%,31.74%,57.29%。考虑和不考虑CO2肥效的情况下,5个大气环流模型引起的模拟结果的不确定性都在合理范围之内,多大气环流模型与CENTURY耦合模拟的ANPP结果较为一致。

Abstract: The CENTURY model was used to simulate the dynamic changes in aboveground net primary productivity (ANPP) in the Haibei alpine meadow steppe, based on meteorological data from 1957 to 2014 and measured data from 1998 to 2014. The CENTURY model was coupled with five general circulation models (GCMs) to simulate the impacts of changes in climate and CO2 concentration on the ANPP in three future periods in the RCP (the latest Representative Concentration Pathways) 4.5 and 8.5 scenarios. The results showed that: 1) The trends in the measured values and the simulated values of ANPP at the research site from 1998 to 2014 were highly consistent (Pearson’s correlation coefficient, 0.67; root mean square error, 19.62 g·m-2), indicating that the CENTURY model is applicable to the alpine meadow steppe in Haibei. 2) Over the past 50 years, the annual mean minimum temperature, annual mean maximum temperature, and annual mean temperature have significantly increased (P<0.01) in the alpine meadow steppe, and there have been marked fluctuations in annual mean precipitation, with precipitation mainly concentrated in the vegetation growing season. The average value of ANPP in the alpine meadow steppe is 271 g·m-2. The average ANPP has shown an overall increasing trend, but the trend was not significant (P>0.05). 3) There is a positive rate of change in the ensemble average of annual mean minimum temperature, annual mean maximum temperature, annual mean temperature, and annual mean precipitation during the three future periods: the 2030s (2016-2040), the 2050s (2041-2070), and the 2080s (2071-2099) at RCP4.5 and RCP8.5, relative to the baseline period (2001-2014). If CO2 fertilization effects are excluded, the ensemble average ANPP of the alpine meadow steppe is predicted to increase by 2.21%, 11.53%, and 17.78% at RCP4.5, and by 8.34%, 21.68%, and 40.32% at RCP8.5, during the three future periods (2030s, 2050s, and 2080s, respectively), compared with the baseline period (2001-2014). If CO2 fertilization effects are included, the ensemble average ANPP of alpine meadow-steppe is predicted to increase by 2.89%, 14.29%, and 24.28% at RCP4.5, and by 11.57%, 31.74%, and 57.29% at RCP8.5 during the three future periods (2030s, 2050s, and 2080s, respectively). The simulated ANPP results from five GCMs showed good consistency, and the uncertainty caused by combining climate models with the CENTURY model was in a reasonable range.