[1] International Service for the Acquisition of Agri-biotech Applications(ISAAA). Global status of commercialized biotech/GM crops: 2015. China Biotechnology, 2016, 36(4): 1-11. 国际农业生物技术应用服务组织. 2015 年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2016, 36(4): 1-11. [2] Stewart C N Jr, Halfhill M D, Warwick S I. Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics, 2003, 4(4): 806-817. [3] Lu B R, Fu Q, Shen Z C. Commercialization of transgenic rice in China: potential environmental biosafety issues. Biodiversity Science, 2008, 16(5): 426-436. 卢宝荣, 傅强, 沈志成. 我国转基因水稻商品化应用的潜在环境生物安全问题. 生物多样性, 2008, 16(5): 426-436. [4] Cao D, Stewart C N, Zheng M, et al . Stable Bacillus thuringiensis transgene introgression from Brassica napus to wild mustard B. juncea . Plant Science, 2014, 227: 45-50. [5] Chen C Y, Luo Y L, Li X. Research situation and development countermeasure of transgenic rapeseed in China. Hubei Agricultural Sciences, 2013, 52(16): 3762-3766. 陈春燕, 罗颖玲, 李晓. 中国转基因油菜研究现状及发展对策. 湖北农业科学, 2013, 52(16): 3762-3766. [6] Yoshimura Y, Beckie H J, Matsuo K. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environmental Biosafety Research, 2006, 5(2): 67-75. [7] Kawata M, Murakami K, Ishikawa T. Dispersal and persistence of genetically modified oilseed rape around Japanese harbors. Environmental Science and Pollution Research, 2009, 16(2): 120-126. [8] Aono M, Wakiyama S, Nagatsu M, et al . Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan. GM Crops, 2011, 2(3): 201-210. [9] Tsuda M, Okuzaki A, Kaneko Y, et al . Persistent C genome chromosome regions identified by SSR analysis in backcross progenies between Brassica juncea and B. napus . Breeding Science, 2012, 62(4): 328-333. [10] Song X L, Huangfu C H, Qiang S. Gene flow from transgenic glufosinate- or glyphosate-tolerant oilseed rape to wild rape. Journal of Plant Ecology (Chinese Version), 2007, 31(4): 729-737. 宋小玲, 皇甫超河, 强胜. 抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动. 植物生态学报, 2007, 31(4): 729-737. [11] Richardg F J, Tristant A, Lindae N L, et al . Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica, 2007, 158(1): 209-230. [12] Chèvre A M, Adamczyk K, Eber F, et al . Modelling gene flow between oilseed rape and wild radish. Evolution of chromosome structure. Theoretical and Applied Genetics, 2007, 114: 209-221. [13] Devos Y, De Schrijver A, Reheul D. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives. Environmental Monitoring and Assessment, 2009, 149(1/2/3/4): 303-322. [14] Jenczewski E, Ronfort J, Chèvre A M. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environmental Biosafety Researeh, 2003, 2: 9-24. [15] Darmency H, Fleury A. Mating system in Hirschfeldia incana and hybridization to oilseed rape. Weed Research-Oxford, 2000, 40(2): 231-238. [16] Chèvre A M, Eber F, Baranger A, et al . Gene flow from transgenic crops. Nature, 1997, 389: 924. [17] Chèvre A M, Eber F, Baranger A, et al . Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F 1 interspecific hybrids: an assessment of transgene dispersal. Theoretical and Applied Genetics, 1998, 97(1/2): 90-98. [18] Gueritaine G, Sester M, Eber F, et al . Fitness of backcross six of hybrids between transgenic oilseed rape ( Brassica napus ) and wild radish ( Raphanus raphanistrum ). Molecular Ecology, 2002, 11(8): 1419-1426. [19] Zheng A Q, Qiang S, Song X L. Fitness of backcross between F 1 (wild B. juncea ×herbicide-resistant transgenic oilseed rape) and 5 conventional cultivate varieties. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 337-344. 郑爱琴, 强胜, 宋小玲. 抗除草剂转基因油菜与野芥菜的杂交1代与5种常规栽培油菜回交后代的适合度. 应用与环境生物学报, 2014, 20(3): 337-344. [20] Hauser T P, Damgaard C, Jørgensen R B. Frequency-dependent fitness of hybrids between oilseed rape ( Brassica napus ) and weedy B. rapa (Brassicaceae). American Journal of Botany, 2003, 90(4): 571-578. [21] Campbell L G, Snow A A. Competition alters life history and increases the relative fecundity of crop-wild radish hybrids ( Raphanus spp.). New Phytologist, 2007, 173(3): 648-660. [22] Mercer K L, Andow D A, Wyse D L, et al . Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecology Letters, 2007, (10): 383-393. [23] Hovick S M, Campbell L G, Snow A A, et al . Hybridization alters early life-history traits and increases plant colonization success in a novel region. The American Naturalist, 2012, 179(2): 192-203. [24] Huangfu C H, Song X L, Qiang S. ISSR variation within and among natural Brassica juncea populations, implication for herbicide resistance evolution. Genetic Resources and Crop Evolution, 2009, 56(7): 913-924. [25] Jørgensen R B, Andersen B, Hauser T P, et al . Introgression of crop genes from oilseed rape ( Brassica napus ) to related wild species-an avenue for the escape of engineered genes. Acta Horticulturae, 1998, 459: 211-217. [26] Pu H M, Qi C K, Zhang J F, et al . Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops. Acta Ecologica Sinica, 2005, 25(3): 581-588. 浦惠明, 戚存扣, 张洁夫, 等. 转基因抗除草剂油菜对近缘作物的基因漂移. 生态学报, 2005, 25(3): 581-588. [27] Song X L, Wang Z, Zuo J, et al . Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis . Theoretical and Applied Genetics, 2010, 120(8): 1501-1510. [28] Cudney D W, Jordan L S, Hall A E. Effect of wild oat ( Avena fatua ) infestations on light interception and growth rate of wheat ( Triticum aestivum ). Weed Science, 1991, 39(2): 175-179. [29] Leng S H, Shan Y H, Zhu G R, et al . Study on axillary bud differentiation and primary branch formation of rape. Chinese Journal of Oil Crop Sciences, 1996, (2): 20-23. 冷锁虎, 单玉华, 朱耕如, 等. 油菜的腋芽分化与分枝形成. 中国油料作物学报, 1996, (2): 20-23. [30] Hu H W. The relation of 12 kinds of main traits and yield of Brassica napus . Chinese Journal of Oil Crop Sciences, 1997, (3): 10-11. 胡虹文. 甘蓝型油菜12种主要性状与产量的关系. 中国油料作物学报, 1997, (3): 10-11. [31] Honek A, Martinkova Z. Body size and the colonisation of cereal crops by the invasive slug Arion lusitanicus . Annals of Applied Biology, 2015, 158(1): 79-86. [32] Gao B J, Li P, Jiang H. A number of Brassica napus were used relationship analysis of yield and agronomic traits. Journal of Biomathematics, 2007, 22(1): 137-144. 高必军, 李平, 江洪. 甘蓝型油菜若干农艺性状与单株产量的关系分析. 生物数学学报, 2007, 22(1): 137-144. [33] Daci Z G, Wang J L, Ciren Y J, et al . Canonical correlation analysis of agronomic characters of Brassica juncea in western China. Agricultural Science & Technology-Hunan, 2011, (11): 1600-1604, 1666. [34] Lü Z W, Xu P, Zhang X X, et al . Primary study on anatomic and genetic characteristics of multi-loculus in Brassica juncea . Chinese Journal of Oil Crop Sciences, 2012, 34(5): 461-466. 吕泽文, 徐平, 张向向, 等. 芥菜型油菜多室角果的解剖特征及遗传分析. 中国油料作物学报, 2012, 34(5): 461-466. [35] Liu Y B, Wei W, Ma K P, et al . Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Science, 2010, 179(5): 459-465. [36] Song Z P, Lu B R, Zhu Y G, et al . Gene flow from cultivated rice to the wild species Oraza rufipogon under experimental field conditions. New Phytologist, 2003, 157: 657-665. [37] Johnston J A, Arnold M L, Donovan L A. High hybrid fitness at seed and seedling life history stages in Louisiana irises . Journal of Ecology, 2003, 91(3): 438-446. [38] Warwick S I, Beckie H J, Hall L M. Gene flow, invasiveness, and ecological impact of genetically modified crops. Annals of the New York Academy of Sciences, 2009, 1168(1): 72-99. [39] Hauser T P, Shaw R G. Fitness of F 1 hybrids between weedy Brassica rapa and oilseed rape ( B. napus ). Heredity, 1998, 81(4): 429-435. [40] Hauser T P, Jørgensen R B. Fitness of backcross and F 2 hybrids between weedy Brassica rapa and oilseed rape ( B. napus ). Heredity, 1998, 81(4): 436-443. [41] Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience, 2005, 55: 669-678. [42] Snow A A, Andersen B, Jørgensen R B. Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa . Molecular Ecology, 1999, 8(4): 605-615. [43] Mikkelsen T R, Jensen J, Jørgensen R B. Inheritance of oilseed rape ( Brassica napus ) RAPD makers in a backcross porgeny with Brassica campestris . Theoretical and Applied Genetics, 1996, 92: 492-497. [44] Xue L, Fu J D. A review on factors affecting plant competition. Journal of Central South University of Forestry & Technology, 2012, 32(2): 6-15. 薛立, 傅静丹. 影响植物竞争的因子. 中南林业科技大学学报, 2012, 32(2): 6-15. [45] Halfhill M D, Sutherland J P, Moon H S, et al . Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 2005, 14(10): 3177-3189. [46] Jiang J H, Zhou C F, An S Q, et al . Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes. Ecological Engineering, 2008, 34(2): 79-90. [47] Zhang L. Early Competition Dynamic Research In Pure And Mixed Communities of Festuca arundinacea Sherb., Lolium perenne L. and Poa prantensis L. Ya’an: Sichuan Agricultural University, 2007. 张岚. 高羊茅、黑麦草、早熟禾单种与混种的初期竞争动态研究. 雅安: 四川农业大学, 2007. [48] Zhang H B, Xia H, Yang X, et al . Fitness effect on insect-resistant F 2 progeny of crop-weedy rice hybrids under different cultivation modes. Journal of Fudan University (Natural Science), 2013, (4): 419-427. 张宏彬, 夏辉, 杨箫, 等. 种植密度对抗虫转基因杂草稻分离后代适合度的影响. 复旦学报(自然科学版), 2013, (4): 419-427. [49] Mao K, Zhou S R, Wang S M, et al . Study on the dynamics of biomass and interspecific competition of mixture communities of common vetch with Italian ryegrass. Acta Agrestia Sinca, 1997, 5(1): 8-10. 毛凯, 周寿荣, 王四敏, 等. 箭舌豌豆混播黑麦草生物量和种间竞争的研究. 草地学报, 1997, 5(1): 8-10. [50] Shi P C, Shi G L, Chen Y N, et al . Influence of density rations in mixed planting on competitive indexes of triticale cultivar. Journal of Shihezi University (Natural Science), 2011, 29(3): 265-268. 石培春, 石国亮, 陈亚南, 等. 混种密度比例对小黑麦品种竞争系数的影响. 石河子大学学报(自然科学版), 2011, 29(3): 265-268. [51] Johannessen M M, Andersen B A, Jørgensen R B. Competition affects gene flow from oilseed rape (♀) to Brassica rapa (♂). Heredity, 2006, 96(5): 360-367. [52] Londo J P, Bautista N S, Sagers C L, et al . Glyphosate drift promotes changes in fitness and transgene gene flow in canola ( Brassica napus ) and hybrids. Annals of Botany, 2010, 106(6): 957-965. [53] Londo J P, Bollman M A, Sagers C L, et al . Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L. Heredity, 2011, 107(4): 328-337. |