[1] Guisan A, Zimmermann N E.Predictive habitat distribution models in ecology. Ecological Modelling, 2000, 135(2/3): 147-186. [2] Noble I R, Gitay H.A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 1996, 7(3): 329-336. [3] Yang X H, Bao Y J, Han G D, et al. Plant functional group and their applications in ecology research. Journal of Dalian Nationalities University, 2009, 11(5): 397-400, 409. 杨晓慧, 鲍雅静, 韩国栋, 等. 植物功能群及其在生态学研究中的应用. 大连民族学院学报, 2009, 11(5): 397-400, 409. [4] Han M, Yang L M, Zhang Y G, et al. The biomass of C3 and C4 plant function groups in Leymus chinensis communities and theirs response to environmental change along Northeast China transect. Acta Ecologica Sinica, 2006, (6): 1825-1832. 韩梅, 杨利民, 张永刚, 等. 中国东北样带羊草群落C3和C4 植物功能群生物量及其对环境变化的响应. 生态学报, 2006, (6): 1825-1832. [5] Nelson D M, Hu F S, Scholes D R, et al. Using spiral (single pollen isotope ratio analysis) to estimate C3- and C4-grass abundance in the paleorecord. Earth and Planetary Science Letters, 2008, 269(1/2): 11-16. [6] Pau S, Edwards E J, Still C J.Improving our understanding of environmental controls on the distribution of C3 and C4 grasses. Global Change Biology, 2013, 19(1): 184-196. [7] Angelo C L, Daehler C C.Temperature is the major driver of distribution patterns for C4 and C3 BEP grasses along tropical elevation gradients in Hawaii, and comparison with worldwide patterns. Botany, 2015, 93(1): 9-22. [8] Tang H P.The C4 plant distribution and its correlation with environmental factors in Northeast China transect (NECT) area. Chinese Science Bulletin, 1999, (4): 416-421. 唐海萍. 中国东北样带(NECT)的C4植物分布及其与环境因子的相关性. 科学通报, 1999, (4): 416-421. [9] Murphy B P, Bowman D.Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Global Ecology and Biogeography, 2007, 16(2): 160-169. [10] Bremond L, Boom A, Favier C.Neotropical C3/C4 grass distributions-present, past and future. Global Change Biology, 2012, 18(7): 2324-2334. [11] Niu S L, Jiang G M, Li Y G.Environmental regulations of C3 and C4 plants. Acta Ecologica Sinica, 2004, (2): 308-314. 牛书丽, 蒋高明, 李永庚. C3与C4植物的环境调控. 生态学报, 2004, (2): 308-314. [12] Cavagnaro J B.Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia, 1988, 76(2): 273-277. [13] Sage R F, Wedin D A, Li M.The biogeography of C4 photosynthesis: patterns and controlling factors//C4 plant biology. San Diego: Academic Press, 1999: 313. [14] Hernandez P A, Franke I, Herzog S K, et al. Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 2008, 17(6): 1353-1366. [15] Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29(2): 129-151. [16] Yi Y, Cheng X, Yang Z, et al. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92: 260-269. [17] Xu J, Cao B, Bai C K.Prediction of potential suitable distribution of endangered plant Kingdonia uniflora in China with MaxEnt. Chinese Journal of Ecology, 2015, (12): 3354-3359. 徐军, 曹博, 白成科. 基于MaxEnt濒危植物独叶草的中国潜在适生分布区预测. 生态学杂志, 2015, (12): 3354-3359. [18] Zhang X A, Sui X Y, Lü Z, et al. A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using MaxEnt. Biodiversity Science, 2014, (2): 182-188. 张熙骜, 隋晓云, 吕植, 等. 基于MaxEnt的两种入侵性鱼类(麦穗鱼和鲫)的全球适生区预测. 生物多样性, 2014, (2): 182-188. [19] Yue M F, Feng L, Cui Y, et al. Prediction of the potential distribution and suitability analysis of the invasive weed, Bidens alba (L.) DC. Journal of Biosafety, 2016, (3): 222-228. 岳茂峰, 冯莉, 崔烨, 等. 基于MaxEnt模型的入侵植物白花鬼针草的分布预测及适生性分析. 生物安全学报, 2016, (3): 222-228. [20] Wen C, Gu L, Wang H, et al. GAP analysis on national nature reserves in China based on the distribution of endangered species. Biodiversity Science, 2015, (5): 591-600. 闻丞, 顾垒, 王昊, 等. 基于最受关注濒危物种分布的国家级自然保护区空缺分析. 生物多样性, 2015, (5): 591-600. [21] Li B V, Pimm S L.China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology, 2016, 30(2): 329-339. [22] Qin P Y, Yang H J, Jiang F L, et al. Quantitative classification of natural plant communities in the Saihanba National Nature Reserve, Hebei Province, China. Chinese Journal of Applied Ecology, 2016, (5): 1383-1392. 秦朋遥, 杨会娟, 蒋凤玲, 等. 河北省塞罕坝保护区天然植物群落数量分类. 应用生态学报, 2016, (5): 1383-1392. [23] Tian X M, Yan H X, Yuan Y, et al. Response of species richness to the fragmentation of vegetation landscape and its spatial variation scales in Saihanba Nature Reserve. Scientia Silvae Sinicae, 2016, (12): 13-21. 田晓敏, 闫海霞, 袁业, 等. 塞罕坝自然保护区物种丰富度对植被景观破碎化的响应及其空间尺度差异. 林业科学, 2016, (12): 13-21. [24] Gong C M, Ning P B, Wang G X, et al. A review of adaptable variations and evolution of photo-synthetic carbon assimilating pathway in C3 and C4 plants. Chinese Journal of Plant Ecology, 2009, (1): 206-221. 龚春梅, 宁蓬勃, 王根轩, 等. C3和C4植物光合途径的适应性变化和进化. 植物生态学报, 2009, (1): 206-221. [25] Wang T, Wang G, Innes J, et al. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. Forest Ecology and Management, 2016, 360: 357-366. [26] Wang G, Wang T, Kang H, et al. Adaptation of Asia-Pacific forests to climate change. Journal of Forestry Research, 2016, 27(3): 469-488. [27] Wang T, Hamann A, Spittlehouse D L, et al. ClimateWNA-high-resolution spatial climate data for Western North America. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16-29. [28] Zhang Z D, Zang R G.Predicting the distribution of potential natural vegetation based on species functional groups in fragmented and species-rich forests. Plant Ecology and Evolution, 2013, 146(3): 261-271. [29] Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 2007, (4): 365-372. 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, (4): 365-372. [30] Rao Z G, Chen F H, Zhang X, et al. Spatial-temporal variations and driving forces of the relative abundance of C3/C4 plants in global terrestrial vegetation since the Last Glacial Age. Chinese Science Bulletin, 2012, (18): 1633-1645. 饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4 植物相对丰度时空变化基本特征及其可能的驱动机制. 科学通报, 2012, (18): 1633-1645. [31] Wertin T M, Reed S C, Belnap J.C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia, 2015, 177(4): 997-1013. [32] Long S P.C4 photosynthesis at low temperatures. Plant Cell and Environment, 1983, 6(4): 345-363. [33] Paruelo J M, Lauenroth W K.Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications, 1996, 6(4): 1212-1224. [34] Osborne C P, Freckleton R P.Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings Biological Sciences, 2009, 276: 1753. [35] Wang P, Yin L J, Li J D.Ecological distribution and physiological adaptation to saline-alkali environment of C3 and C4 plants in Northeastern China prairie area. Chinese Journal of Applied Ecology, 1997, (4): 407-411. 王萍, 殷立娟, 李建东. 东北草原区C3、C4 植物的生态分布及其适应盐碱环境的生理特性. 应用生态学报, 1997, (4): 407-411. |