欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2019, Vol. 28 ›› Issue (2): 112-120.DOI: 10.11686/cyxb2018154

• 研究论文 • 上一篇    下一篇

紫花苜蓿开花性状的遗传特性分析与QTL定位

何飞1,2, 张帆2, 张铁军2, 康俊梅2, 龙瑞才2, 杨青川2, 马春晖1,*   

  1. 1.石河子大学,新疆 石河子832003;
    2.中国农业科学院北京畜牧兽医研究所,北京100193
  • 收稿日期:2018-03-16 出版日期:2019-02-20 发布日期:2019-02-20
  • 通讯作者: *E-mail: chunhuima@126.com
  • 作者简介:何飞(1995-), 男, 新疆阿克苏人, 在读硕士。E-mail: hefei0609@126.com
  • 基金资助:
    国家自然科学基金资助项目(31402123),国家牧草产业技术体系(CARS-34)和公益性行业(农业)科研专项“苜蓿高效种植技术研究与示范”(201403048)资助

An analysis of genetic control of flowering time in alfalfa with QTL mapping of active loci

HE Fei1,2, ZHANG Fan2, ZHANG Tie-jun2, KANG Jun-mei2, LONG Rui-cai2, YANG Qing-chuan2, MA Chun-hui1,*   

  1. 1.Shihezi University, Shihezi 832003, China;
    2.Institute of Animal Sciences of CAAS, Beijing 100193, China
  • Received:2018-03-16 Online:2019-02-20 Published:2019-02-20
  • Contact: *E-mail: chunhuima@126.com

摘要: 通过构建紫花苜蓿杂交F1代遗传分离群体,研究紫花苜蓿早熟性状的遗传特性,确定始花期性状的最适遗传模型,同时定位始花期相关的QTL位点。以低产早熟紫花苜蓿(父本)和高产晚熟紫花苜蓿(母本)为亲本构建杂交群体,以亲本和二者杂交产生的152个F1代单株为研究对象。于2015和2016年调查始花期性状,运用主多基因遗传模型分析始花期性状的最适遗传模型。通过GBS测序技术对154个单株进行基因分型,利用测序产生的SNP标记构建连锁图谱,同时结合表型数据进行QTL定位。结果表明:2MG-A为始花期性状的最适遗传模型,2015年的主基因遗传率为99%,2016年的主基因遗传率为98.5%。父本连锁图覆盖图距为1386 cM,平均标记密度3.2 cM;母本连锁图覆盖图距为798.73 cM,平均标记密度8.07 cM。对两年的数据进行QTL定位分析得到2个主效QTL位点,表型贡献率分别为12.1334%和11.0157%。表明始花期主要受两对主效基因控制,同时具有加性作用。始花期性状主要由2个QTL位点控制。

关键词: 开花性状, 始花期, 遗传分析, 连锁图谱, QTL定位

Abstract: In order to explore the genetic basis for flowering date variation in alfalfa, a QTL mapping population was set up comprising 152 F1 hybrids of 2 parent plants with contrasting maturity dates, and the QTL loci associated with flowering date were identified. A low-yielding early-maturing alfalfa variety was used as the pollen parent and a high-yield late-maturing variety was used as the seed parent. In 2015 and 2016, the date of initial flowering was recorded for the 152 F1 hybrids and the 2 parent plants, and genotyping of the 154 single plants was carried out using GBS sequencing technology. The SNP markers generated were used to construct a linkage map, and QTL ici Mapping software and phenotypic data were used for QTL positioning of flowering time. A major gene and poly gene inheritance model was then used to build up the optimal genetic model for control of initial flowering time. The analysis indicated two major gene model-additive effect as the optimum genetic model for controlling date of initial flowering. The major gene heritability reached 99.0% in 2015, while it was 98.5% in 2016. The pollen-parent linkage map comprised 1386 cM and the average marker spacing was 3.2 cM. The female-parent linkage map covered 798.73 cM with an average marker spacing of 8.07 cM. Two main QTLs were found in both year’s data sets, with phenotypic variation accounted for being 12.13% and 11.02% respectively. In summary, date of initial flowering is largely determined by two major genes with additive effects. The initial time of flowering is mainly controlled by two QTL sites.

Key words: flowering trait, initial time of flowering, genetic analysis, genetic linkage map, QTL mapping