草业学报 ›› 2014, Vol. 23 ›› Issue (6): 304-312.DOI: 10.11686/cyxb20140636
康俊梅,张铁军,王梦颖,张怡,杨青川*
收稿日期:
2013-12-02
出版日期:
2014-12-20
发布日期:
2014-12-20
通讯作者:
E-mail:qchyang66@163.com
作者简介:
康俊梅(1972-),女,内蒙古集宁人,副研究员,博士
基金资助:
KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan
Received:
2013-12-02
Online:
2014-12-20
Published:
2014-12-20
摘要: 四倍体紫花苜蓿是重要的豆科牧草之一,由于其复杂的遗传背景与二倍体作物相比遗传作图与重要性状数量性状位点(quantitative trait locus,QTL)定位研究相对滞后。然而,二倍体苜蓿的相关研究起步较早,已经建立了高密度遗传图谱和物理图谱,这些研究为四倍体苜蓿遗传作图与QTL定位奠定了基础。随着第三代分子标记与测序技术的快速发展,极大地促进了四倍体苜蓿的高密度遗传图谱构建与QTL定位研究,并借助分子标记辅助育种技术对提高苜蓿选育效率,加速育种进程具有重要意义。本文对苜蓿遗传图谱构建与QTL定位研究及发展趋势进行了总结,并对苜蓿关联作图与全基因组选择的研究进展及应用前景加以概述,旨在为读者就相关研究领域有较全面的了解。
中图分类号:
康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312.
KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa[J]. Acta Prataculturae Sinica, 2014, 23(6): 304-312.
Reference: [1]Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214. [2]Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291. [3]Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96. [4]Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332. [5]Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331. [6]Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172. [7]Jiang J, Yang B L, Xia T et al. Analysis of genetic diversity of salt tolerant alfalfa germplasms[J]. Acta Prataculturae Sinica, 2011, 20(5): 119-125. [8]Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137. [9]Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71. [10]Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317. [11]Liu S N, Yu L Q, Zhou Y L et al. The construction of genetic linkage frame map in tetraploid Medicago using RAPD markers[J]. Acta Prataculturae Sinica, 2012, 21(1): 170-175. [12]Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657. [13]Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794. [14]Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200. [15]Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992. [16]Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115. [17]Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19. [18]Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350. [19]Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501. [20]Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419. [21]Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163. [22]Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14. [23]Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35. [24]Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378. [25]Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415. [26]Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10. [27]Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679. [28]Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913. [29]Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112. [30]Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19. [31]Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18. [32]Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396. [33]Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104. [34]Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786. [35]Jiang G G, Song L L, Guo D L et al. Genome-wide association mapping of aluminum tolerance in Medicago truncatula[J]. Acta Prataculturae Sinica, 2013, 22(4): 170-178. [36]Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436. [37]Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162. [38]Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268. [39]Li X, Acharya A, Farmer A D, et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568. [40]Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435. [41]Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019. [42]Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966. [43]Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169. [44]Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12. [45]Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768. [46]Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524. [47]Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620. [48]Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406. [49]Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502. [50]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199. [51]Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246. [52]Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12. [53]Li X H,Brummer E C. Applied genetics and genomics in alfalfa breeding[J]. Agronomy, 2012, 2: 40-61. [54]Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68. [55]Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723. [56]Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748. [57]Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590. [58]Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876. [59]Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330. [60]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177. [61]Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123. [62]Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35. [63]Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690. [64]Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967. [65]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12. [66]Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10. 参考文献: [1]Sumberg J E, Murphy R P, Lowe C C. Selection for fiber and protein concent ration in a diverse alfalfa population[J]. Crop Science, 1983, 23: 11214. [2]Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development[A]. In: Hanson, Barnes D K, Hill Jr. Alfalfa and Alfalfa Improvement, Agronomy Monograph No. 29[M]. Madison American Society of Agronomy, 1988: 25291. [3]Brummer E C, Kochert G, Bouton J H. RFLP variation in diploid and tetraploid alfalfa[J].Theoretical and Applied Genetics, 1991, 83: 89-96. [4]Brummer E C, Bouton J H, Kochert G. Development of an RFLP map in diploid alfalfa[J]. Theoretical and Applied Genetics, 1993, 86: 329-332. [5]Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1990, 32(3): 314-331. [6]Diwan N, Bouton J H, Kochert G. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa[J]. Theoretical and Applied Genetics, 2000, 101: 165-172. [7]姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125. [8]Kiss B G, Csandadi G, Kalmam K. Construction of basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers[J]. Molecular & General Genetics, 1993, 238: 129-137. [9]Echt C S, Kidwell K K, Knapp S J. Linkage mapping in diploid alfalfa (Medicago sativa L.)[J]. Genome, 1994, 37: 61-71. [10]Mengoni A, Gori A, Bazzigalupo M. Use of RAPD and microsatellite (SSR) to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa[J]. Plant Breeding, 2000, 193: 311-317. [11]刘曙娜, 于林清, 周延林, 等. 利用RAPD技术构建四倍体苜蓿遗传连锁图谱[J]. 草业学报, 2012, 21(1): 170-175. [12]Kalp Endre L, Zimnyi G. Construction of an improved linkage map of diploid alfalfa (Medicago sativa)[J]. Theoretical and Applied Genetics, 2000, 100: 641-657. [13]Yu K F, Pauls K P. Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked genomic DNA samples[J]. Theoretical and Applied Genetics, 1993, 86: 788-794. [14]Brouwer D J, Osborn T C. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 1999, 99: 1194-1200. [15]Sledge M K, Ray I M, Jiang G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 980-992. [16]Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing[J]. Theoretical and Applied Genetics, 2003, 106: 1107-1115. [17]Julier B, Flajoulot S, Barre P. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers[J]. BMC Plant Biology, 2003, 3: 1-19. [18]Han Y, Kang Y, Torres-Jerez I. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis[J]. BMC Genomics, 2011, 12: 350. [19]Han Y, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.)[J]. Molecular Breeding, 2012, 29: 489-501. [20]Han Y, Ray I M, Sledge M K. Drought tolerance in tetraploid alfalfa[A]. Multifunctional grasslands in a changing world, Volume II: XXI International Grassland Congress and VIII International Rangeland Congress[C]. Hohhot, China, 2008: 419. [21]Khu D M, Reyno R, Han Y. Identification of aluminum tolerance QTLs in tetraploid alfalfa[J]. Crop Science, 2012, 53: 148-163. [22]Gou J, Han Y, Li X. SNP identification in genes associated with lignin content and forage composition in alfalfa[C]. Plant & Animal Genomes XVII Conference, 2011: 10-14. [23]Li X, Wei Y, Moore K J. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population[J]. Plant Genome, 2011, 4: 24-35. [24]Zhang Y, Sledge M K, Bouton J H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers[J].Theoretical and Applied Genetics, 2007, 114: 1367-1378. [25]Sakiroglu M, Doyle J J, Brummer E C. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers[J]. Theoretical and Applied Genetics, 2010, 121: 403-415. [26]Robins J G, Luth D, Campbell I A. Genetic mapping of biomass production in tetraploid alfalfa[J]. Crop Science, 2007, 47: 1-10. [27]Li X, Wang X, Brummer E C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications[J]. Theoretical and Applied Genetics, 2011, 123: 667-679. [28]Narasimhamoorthy B, Bouton J H, Olsen K M. Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa[J]. Theoretical and Applied Genetics, 2007, 114: 901-913. [29]Pupilli F, Businelli S, Paolocci F. Extent of RFLP variability in tetraploid populations of alfalfa (Medicago sativa)[J]. Plant Breeding, 1996, 115: 106-112. [30]Li X H, Brummer E C. Inbreeding depression for fertility and biomass in advanced generations of inter- and intra-subspecific hybrids of tetraploid alfalfa[J]. Crop Science, 2009, 49: 13-19. [31]Robins J G, Bauchan G R, Brummer E C. Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.)[J]. Crop Science, 2007, 47: 11-18. [32]Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396. [33]Alarcon Zuniga B, Scott P, Brummer E C. Quantitative trait locus mapping of winter hardiness metabolites in autotetraploid alfalfa (M. sativa)[A]. In: Hopkins A. Molecular Breeding of Forage and Turf[M]. Kluwer: Dordrecht, the Netherlands, 2004: 97-104. [34]Robins J G, Hansen J L, Viands D R. Genetic mapping of persistence in tetraploid alfalfa[J]. Crop Science, 2008, 48: 1780-1786. [35]姜格格, 宋丽莉, 郭东林, 等. 蒺藜苜蓿耐酸铝性状的全基因组关联分析[J]. 草业学报, 2013, 22(4): 170-178. [36]Julier B, Bernard K, Gibelin C. QTL for water use efficiency in alfalfa[A]. In: Huyghe C. Sustainable Use of Genetic Diversity in Forage and Turf Breeding[M]. Berlin, Germany: Springer, 2010: 433-436. [37]Beavis W D. QTL analyses: power, precision, and accuracy[A]. In: Paterson A. Molecular Dissection of Complex Traits[M].New York, NY, USA: CGC Press, 1998: 145-162. [38]Xu S. Theoretical basis of the Beavis effect[J]. Genetics, 2003, 165: 2259-2268. [39]Li X, Acharya A, Farmer A D,et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing[J]. BMC Genomics, 2012, 13: 568. [40]Musial J M, Mackie J M, Armour D J. Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne[J]. Theoretical and Applied Genetics, 2007, 114: 1427-1435. [41]Endre G, Kalo P, Kevei Z. Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa)[J]. Molecular Genetics and Genomics, 2002, 266: 1012-1019. [42]Endre G, Kereszt A, Kevei Z. A receptor kinase gene regulating symbiotic nodule development[J]. Nature, 2002, 417: 962-966. [43]Yang S, Gao M, Xu C. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa[J]. Proceedings of the National Academy of Sciences, USA, 2008, 105: 12164-12169. [44]Kamphuis L, Lichtenzveig J, Oliver R. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula[J]. BMC Plant Biology, 2008, 8(30): 1-12. [45]Moreau D, Burstin J, Aubert G. Using a physiological framework for improving the detection of quantitative trait loci related to nitrogen nutrition in Medicago truncatula[J]. Theoretical and Applied Genetics, 2012, 124: 755-768. [46]Young N D, Debellé F, Oldroyd G E D. The Medicago genome provides insight into the evolution of rhizobial symbioses[J]. Nature, 2011, 480: 520-524. [47]Pierre J B, Huguet T, Barre P. Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula[J]. Theoretical and Applied Genetics, 2008, 117: 609-620. [48]Julier B, Huguet T, Chardon F. Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula[J]. Theoretical and Applied Genetics, 2007, 114: 1391-1406. [49]Choi H K, Kim D, Uhm T. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa[J]. Genetics, 2004, 166: 1463-1502. [50]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199. [51]Kalo P, Seres A, Taylor S A. Comparative mapping between Medicago sativa and Pisum sativum[J]. Molecular Genetics and Genomics, 2004, 272: 235-246. [52]Wei Y L, Acharya A, Li X H. Application of Genotyping-by-sequencing (GBS) in alfalfa, the North American Alfalfa Improvement(NAAIC), Trifolium, & Grass Breeders[C]. New York, NY, USA: July 8-10, 2012:10-12. [53]Li X H,Brummer E C. Applied Genetics and Genomics in Alfalfa Breeding[J]. Agronomy, 2012, 2: 40-61. [54]Jannink J L, Walsh B. Association mapping in plant populations[A]. In: Kang M S. Quantitative Genetics, Genomics and Plant Breeding[M]. New York, NY, USA: CAB International, 2002: 59-68. [55]Nordborg M, Weigel D. Next-generation genetics in plants[J]. Nature, 2008, 456: 720-723. [56]Julier B. A program to test linkage disequilibrium between loci in autotetraploid species[J]. Molecular Ecology Resources, 2009, 9: 746-748. [57]Sakiroglu M, Sherman-Broyles S, Story A. Patterns of linkage diequilibium and association mapping in diploid alfalfa (M. sativa L.)[J]. Theoretical and Applied Genetics, 2012, 125(3): 577-590. [58]Herrmann D, Barre P, Santoni S. Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa[J]. Theoretical and Applied Genetics, 2010, 121: 865-876. [59]Goddard M E, Hayes B J. Genomic selection[J]. Journal of Animal Breeding and Genetics, 2007, 124: 323-330. [60]Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding: from theory to practice[J]. Briefings in Functional Genomics, 2010, 9: 166-177. [61]Lorenz A J, Chao S, Asoro F G. Genomic selection in plant breeding: Knowledge and prospects[J]. Advances in Agronomy, 2011, 110: 77-123. [62]Jannink J L. Dynamics of long-term genomic selection[J]. Genetics Selection Evolution, 2010, 42:1-35. [63]Heffner E L, Lorenz A J, Jannink J L. Plant breeding with genomic selection:gain per unit time and cost[J]. Crop Science, 2010, 50: 1681-1690. [64]Huang X, Wei X, Sang T,et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42: 961-967. [65]Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement[J]. Crop Science, 2009, 49: 1-12. [66]Elshire R J, Glaubitz J C, Sun Q. Simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS One, 2011, 6: 1-10. |
[1] | 张前兵,艾尼娃尔·艾合买提,于磊,鲁为华,常青. 绿洲区不同灌溉方式及灌溉量对苜蓿田土壤盐分运移的影响[J]. 草业学报, 2014, 23(6): 69-77. |
[2] | 王绍飞,罗永聪,张新全,黄琳凯,马啸,刘恋. 14个多花黑麦草品种(系)在川西南地区生产性能综合评价[J]. 草业学报, 2014, 23(6): 87-94. |
[3] | 王勇,原现军,郭刚,闻爱友,王坚,肖慎华,余成群,巴桑,邵涛. 西藏不同饲草全混合日粮发酵品质和有氧稳定性的研究[J]. 草业学报, 2014, 23(6): 95-102. |
[4] | 王鸿泽,王之盛,康坤,邹华围,申俊华,胡瑞. 玉米粉和乳酸菌对甘薯蔓、酒糟及稻草混合青贮品质的影响[J]. 草业学报, 2014, 23(6): 103-110. |
[5] | 覃方锉,赵桂琴,焦婷,韩永杰,侯建杰,宋旭东. 含水量及添加剂对燕麦捆裹青贮品质的影响[J]. 草业学报, 2014, 23(6): 119-125. |
[6] | 邱小燕,原现军,郭刚,闻爱友,余成群,巴桑,邵涛. 添加糖蜜和乙酸对西藏发酵全混合日粮青贮发酵品质及有氧稳定性影响[J]. 草业学报, 2014, 23(6): 111-118. |
[7] | 史传奇,刘玫,王臣,张欣欣,程薪宇. 东北野豌豆族植物叶形态结构的研究及其分类学意义[J]. 草业学报, 2014, 23(6): 157-166. |
[8] | 韩宝贺,朱宏. 镉胁迫对白三叶的富集能力、叶片显微结构及其生理特性的影响[J]. 草业学报, 2014, 23(6): 167-175. |
[9] | 刘会杰,李胜,马绍英,张品南,时振振,杨晓明. H2O2胁迫下豌豆初生根及抗氧化酶系统对外源Ca2+的响应[J]. 草业学报, 2014, 23(6): 189-197. |
[10] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[11] | 李君临,张新全,玉柱,郭旭生,孟祥坤,罗燕,闫艳红. 含水量和乳酸菌添加剂对多花黑麦草青贮品质的影响[J]. 草业学报, 2014, 23(6): 342-348. |
[12] | 漆婧华,张峰,王莺,孙国钧. 黄土高原半干旱区覆膜玉米农田氮变化动态研究[J]. 草业学报, 2014, 23(5): 13-23. |
[13] | 田晨霞,张咏梅,王凯,张万. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应[J]. 草业学报, 2014, 23(5): 133-142. |
[14] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
[15] | 潘明洪,凌瑶,景文,马洪平,彭燕. 四川白三叶根瘤菌遗传多样性及系统发育研究[J]. 草业学报, 2014, 23(5): 143-152. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 446
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||