[1] Zhang M L, Jiang W L, Chen Q G, et al. Research progress in the estimation models of grassland net primary productivity. Acta Agrestia Sinica, 2011, 19(2): 356-366. 张美玲, 蒋文兰, 陈全功, 等. 草地净第一性生产力估算模型研究进展. 草地学报, 2011, 19(2): 356-366. [2] Animal Husbandry Bureau of Minister of Agriculture of the People’s Republic of China. China grassland resource. Beijing: China Scientific and Technological Press, 1996. 中华人民共和国农业部畜牧兽医司. 中国草地资源. 北京: 中国科学技术出版社, 1996. [3] Gao Q Z, Zhu W Q, Schwartz M W, et al. Climatic change controls productivity variation in global grasslands. Scientific Reports, 2016, 6: 26958. [4] Geng Y B, Wang S, Hu X D.Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: Simulations based on the CENTURE model. Acta Prataculturae Sinica, 2018, 27(1): 1-13. 耿元波, 王松, 胡雪荻. 高寒草甸草原净初级生产力对气候变化响应的模拟. 草业学报, 2018, 27(1): 1-13. [5] Yang H F, Gang C C, Mu S J, et al. Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50. 杨红飞, 刚成诚, 穆少杰, 等. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. [6] Zhang Y S, Jia W X, Zhao Y F, et al. Spatial-temporal variations of net primary productivity of Qilian Mountains vegetation based on CASA model. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(10): 2085-2091. 张禹舜, 贾文雄, 赵一飞, 等. 基于CASA模型研究祁连山地区植被净初级生产力的时空变化. 西北植物学报, 2014, 34(10): 2085-2091. [7] Wang Y, Xia W T, Liang T G, et al. Spatial and temporal dynamic changes of net primary product based on MODIS vegetation index in Gannan grassland. Acta Prataculturae Sinica, 2010, 19(1): 201-210. 王莺, 夏文韬, 梁天刚, 等. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究. 草业学报, 2010, 19(1): 201-210. [8] Piao S L, Fang J Y, Guo Q H.Application of CASA model to the estimation of Chinese terrestrial net primary productivity. Acta Phytoecologica Sinica, 2001, 25(5): 603-608. 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 2001, 25(5): 603-608. [9] Gower S T, Krankina O, Olson R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications, 2001, 11(5): 1395-1411. [10] Mu S J, Li J L, Yang H F, et al. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15. 穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15. [11] Fu G, Shen Z X, Zhang X Z, et al. Modelling light use efficiency of alpine meadows on the northern Tibetan Plateau based on the MODIS algorithm. Acta Prataculturae Sinica, 2012, 21(1): 239-247. 付刚, 沈振西, 张宪洲, 等. 基于MODIS算法的藏北高寒草甸的光能利用效率模拟. 草业学报, 2012, 21(1): 239-247. [12] Wang Y, Xia W T, Liang T G.Spatial-temporal dynamics simulation of grassland net primary productivity using a satellite data-driven CASA model in Gannan prefecture. Acta Prataculturae Sinica, 2011, 20(4): 316-324. 王莺, 夏文韬, 梁天刚. 基于CASA模型的甘南地区草地净初级生产力时空动态遥感模拟. 草业学报, 2011, 20(4): 316-324. [13] Piao S L, Fang J Y.Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982-1999. Journal of Natural Resources, 2002, 17(3): 373-380. 朴世龙, 方精云. 1982-1999年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17(3): 373-380. [14] Zhang Y L, Qi W, Zhou C P, et al. Spatial and temporal variability in the net primary production (NPP) of alpine grassland on Tibetan Plateau from 1982 to 2009. Acta Geographica Sinica, 2013, 68(9): 1197-1211. 张镱锂, 祁威, 周才平, 等. 1982-2009年青藏高原高寒草地净初级生产力(NPP)时空分异. 地理学报, 2013, 68(9): 1197-1211. [15] Sun Y X, Wang S Y, Chang Q, et al. Study on spatial-temporal variation of net primary productivity for the Tibetan Plateau in recent 30 years. Guangdong Agricultural Sciences, 2014, 41(13): 160-166. 孙云晓, 王思远, 常清, 等. 青藏高原近30年植被净初级生产力时空演变研究. 广东农业科学, 2014, 41(13): 160-166. [16] Zou D F.Spatio-temporal dynamics of Tibet Plateau net primary production using CASA model. Lanzhou: Lanzhou University, 2012. 邹德富. 基于CASA模型的青藏高原NPP时空分布动态研究. 兰州: 兰州大学, 2012. [17] Running S W, Glassy J M, Thornton P E, et al. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) algorithm theoretical basis document[EB/OL] [1999-04-29].https: //lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3. [18] Liu L, Li Y C, Zhu C X, et al. The spatio-temporal variation characteristics of vegetation NPP in Chongqing and its relation with climatic factors from 2001 to 2010. Remote Sensing Information, 2013, 28(5): 99-108. 刘琳, 李月臣, 朱翠霞, 等. 2001年~2010年重庆地区植被NPP时空变化特征及其与气候因子的关系. 遥感信息, 2013, 28(5): 99-108. [19] Wang X C, Wang S D, Zhang H B.Spatio-temporal pattern of vegetation net primary productivity in Henan Province of China based on MOD17A3. Chinese Journal of Ecology, 2013, 32(10): 2797-2805. 王新闯, 王世东, 张合兵. 基于MOD17A3的河南省NPP时空格局. 生态学杂志, 2013, 32(10): 2797-2805. [20] Li D K, Fan J Z, Wang J.Variation characteristics of vegetation net primary productivity in Shaanxi Province based on MOD17A3. Chinese Journal of Ecology, 2011, 30(12): 2776-2782. 李登科, 范建忠, 王娟. 基于MOD17A3的陕西省植被NPP变化特征. 生态学杂志, 2011, 30(12): 2776-2782. [21] Liu H J, Yin S Y, Sun C, et al. Temporal and spatial variation of net primary productivity (NPP) and its responses with climatic changes in the Xilingol grassland from 2000 to 2010. Pratacultural Science, 2015, 32(11): 1709-1720. 刘海江, 尹思阳, 孙聪, 等. 2000-2010年锡林郭勒草原NPP时空变化及其气候响应. 草业科学, 2015, 32(11): 1709-1720. [22] Guo Z G, Gao X H, Liu X Y, et al. Ecological economic value and functions and classification management for grassland in Gannan prefecture, Gansu Province. Journal of Mountain Science, 2004, 22(6): 655-660. 郭正刚, 高新华, 刘兴元, 等. 甘南草地类型的生态经济价值与功能及其分类经营. 山地学报, 2004, 22(6): 655-660. [23] Meng B P, Ge J, Liang T G, et al. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data. Remote Sensing, 2017, 9(4): 372. [24] Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. [25] Jin X, Yang L X.Solar radiation calculation under complex topography based on ArcGIS. Journal of Anhui Agricultural Sciences, 2014, 42(23): 7952-7955, 7973. 金鑫, 杨礼箫. 基于ArcGIS的复杂地形下太阳辐射分析计算. 安徽农业科学, 2014, 42(23): 7952-7955, 7973. [26] Bates D M, Lindstrom M J, Wahba G, et al. GVCPACK—routines for generalized cross validation. Communications in Statistics-Simulation and Computation, 1987, 16(1): 263-297. [27] Mckenney D W, Pedlar J H, Papadopol P, et al. The development of 1901-2000 historical monthly climate models for Canada and the United States. Agricultural and Forest Meteorology, 2006, 138(1/2/3/4): 69-81. [28] Liang T G, Cui X, Feng Q S, et al. Remotely sensed dynamics monitoring of grassland aboveground biomass and carrying capacity during 2001-2008 in Gannan pastoral area. Acta Prataculturae Sinica, 2009, 18(6): 12-22. 梁天刚, 崔霞, 冯琦胜, 等. 2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测. 草业学报, 2009, 18(6): 12-22. [29] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. [30] Field C B, Randerson J T, Malmström C M.Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51(1): 74-88. [31] Zhang F, Zhou G S, Wang Y H.Dynamics simulation of net primary productivity by a satellite data-driven CASA model in Inner Mongolian typical steppe, China. Chinese Journal of Plant Ecology, 2008, 32(4): 786-797. 张峰, 周广胜, 王玉辉. 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报, 2008, 32(4): 786-797. [32] Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 2005, 94(1): 105-122. [33] Xu B, Yang X C, Tao W G, et al. Remote sensing monitoring upon the grass production in China. Acta Ecologica Sinica, 2007, 27(2): 405-413. [34] Liang T G, Feng Q S, Huang X D, et al. Review in the study of comprehensive sequential classification system of grassland. Acta Prataculturae Sinica, 2011, 20(5): 252-258. 梁天刚, 冯琦胜, 黄晓东, 等. 草原综合顺序分类系统研究进展. 草业学报, 2011, 20(5): 252-258. [35] Lin H L, Zhuang Q M, Fu H.Habitat niche-fitness and radix yield prediction models for angelica sinensis cultivated in the alpine area of the southeastern region of Gansu Province, China. Plant Production Science, 2008, 11(1): 42-58. [36] Yu H.Dynamics of grassland growth and its response to climate change on Tibetan Plateau. Lanzhou: Lanzhou University, 2013. 于惠. 青藏高原草地变化及其对气候的响应. 兰州: 兰州大学, 2013. [37] Raymood E, Hunt J R.Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 1994, 15(8): 1725-1730. [38] Ruimy A, Saugier B.Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 1994, 99(D3): 5263-5283. [39] Paruelo J M, Epstein H E, Lauenroth W K, et al. ANPP estimates from NDVI for the central grassland region of the United States. Ecology, 1997, 78(3): 953-958. [40] Wang B L, Wang J J, Yang Y, et al. Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency. Acta Prataculturae Sinica, 2013, 22(5): 220-228. 王保林, 王晶杰, 杨勇, 等. 植被光合有效辐射吸收分量及最大光能利用率算法的改进. 草业学报, 2013, 22(5): 220-228. [41] Yuan W P, Liu S G, Zhou G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 2007, 143(3): 189-207. [42] Potter C S, Klooster S, Brooks V.Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems, 1999, 2(1): 36-48. [43] Zhou G S, Zhang X S.Study on NPP of natural vegetation in China under global climate change. Chinese Journal of Plant Ecology, 1996, 20(1): 11-19. 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究. 植物生态学报, 1996, 20(1): 11-19. [44] Zhou G S, Zhang X S.Study on climate-vegetation classification for global change in China. Acta Botanica Sinica, 1996, 38(1): 8-17. 周广胜, 张新时. 全球变化的中国气候—植被分类研究. 植物学报, 1996, 38(1): 8-17. [45] Zhu W Q, Pan Y Z, Zhang J S.Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 2007, 31(3): 413-424. 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. [46] Zhou C P, Ouyang H, Cao Y, et al. Estimation of net primary productivity in middle reaches of Yarlung Zangbo River and its two tributaries. Chinese Journal of Applied Ecology, 2008, 19(5): 1071-1076. 周才平, 欧阳华, 曹宇, 等. “一江两河”中部流域植被净初级生产力估算. 应用生态学报, 2008, 19(5): 1071-1076. [47] Zhang Y S, Xie Y L.Vegetation water content estimation using NDVI and LSWI from MODIS images. Scientia Geographica Sinica, 2008, 28(1): 72-76. 张友水, 谢元礼. MODIS影像的NDVI和LSWI植被水分含量估算. 地理科学, 2008, 28(1): 72-76. [48] Ma A N, Yu G R, He N P, et al. Above- and below-ground biomass relationships in China’s grassland vegetation. Quaternary Sciences, 2014, 34(4): 769-776. 马安娜, 于贵瑞, 何念鹏, 等. 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 2014, 34(4): 769-776. [49] Wang L, Niu K C, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China’s grassland: Evidence from individual-level observations. Science in China: Life Sciences, 2010, 40(7): 642-649. 王亮, 牛克昌, 杨元合, 等. 中国草地生物量地上-地下分配格局: 基于个体水平的研究. 中国科学: 生命科学, 2010, 40(7): 642-649. [50] Wang W J, Zhao X Y, Fang W Y, et al. Variation of vegetation coverage and its response to climate change in Gannan Plateau from 2000 to 2014. Chinese Journal of Ecology, 2016, 35(9): 2494-2504. 王伟军, 赵雪雁, 万文玉, 等. 2000—2014年甘南高原植被覆盖度变化及其对气候变化的响应. 生态学杂志, 2016, 35(9): 2494-2504. |