草业学报 ›› 2021, Vol. 30 ›› Issue (11): 29-39.DOI: 10.11686/cyxb2020407
孙娇1(), 梁锦秀1, 孔德杰2, 郭鑫年1, 魏永东3, 周涛1()
收稿日期:
2020-09-07
修回日期:
2020-12-17
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
周涛
作者简介:
Corresponding author. E-mail: zhoutao6084609@163.com基金资助:
Jiao SUN1(), Jin-xiu LIANG1, De-jie KONG2, Xin-nian GUO1, Yong-dong WEI3, Tao ZHOU1()
Received:
2020-09-07
Revised:
2020-12-17
Online:
2021-10-19
Published:
2021-10-19
Contact:
Tao ZHOU
摘要:
以宁夏贺兰山东路风沙土壤为研究对象,分析等碳量秸秆、生物炭还田后土壤、微生物、胞外酶及其化学计量特征,为农田养分调控和土壤可持续利用提供科学依据。结果表明,随着秸秆和生物炭还田量的增加土壤有机碳(C)、全磷(P)、速效氮(AN)、速效磷(AP)浓度显著增加,且生物炭还田优于等碳量秸秆处理。而秸秆与生物炭还田对土壤全氮(N)浓度影响不显著。土壤C/N、C/P、N/P、AN/AP变化范围在10.1~10.9、7.4~8.2、0.7、2.7~3.4。且N/P、AN/AP随秸秆还田量的增加显著增加,随生物炭还田量的增加显著降低。生物炭还田后土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)含量显著高于等碳量秸秆还田。而秸秆还田后土壤微生物与胞外酶化学计量比均显著高于等碳量生物炭还田。相关性分析表明,秸秆还田后土壤AN与碱性磷酸酶(AKP)极显著负相关,与β-葡糖苷酶(BG)、亮氨酸氨基肽酶(LAP)、β-乙酰葡糖胺糖苷酶(NAG)、MBC、(BG+CBH)/AKP、(NAG+LAP)/AKP、MBN/MBP极显著正相关。生物炭还田后土壤AP与BG、α-纤维素酶(CBH)、LAP、NAG、MBC、MBN、(BG+CBH)/AKP极显著正相关,与MNC/MBN极显著负相关。综上,生物炭还田有利于提高土壤养分浓度和微生物量,而秸秆还田更有利于维持土壤养分平衡。
孙娇, 梁锦秀, 孔德杰, 郭鑫年, 魏永东, 周涛. 生物炭与秸秆还田对风沙土壤-微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2021, 30(11): 29-39.
Jiao SUN, Jin-xiu LIANG, De-jie KONG, Xin-nian GUO, Yong-dong WEI, Tao ZHOU. Effects of biochar and straw on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil[J]. Acta Prataculturae Sinica, 2021, 30(11): 29-39.
处理Treatment | 秸秆Straw (t·hm-2) | 生物炭Biochar (t·hm-2) | N (kg·hm-2) | P2O5 (kg·hm-2) | K2O (kg·hm-2) |
---|---|---|---|---|---|
对照CK | 0.0 | 0.0 | 330 | 105 | 90 |
低量秸秆SI | 3.5 | 0.0 | 330 | 105 | 90 |
中量秸秆SII | 7.0 | 0.0 | 330 | 105 | 90 |
高量秸秆SIII | 10.5 | 0.0 | 330 | 105 | 90 |
低量生物炭BCI | 0.0 | 3.4 | 330 | 105 | 90 |
中量生物炭BCII | 0.0 | 6.8 | 330 | 105 | 90 |
高量生物炭BCIII | 0.0 | 10.2 | 330 | 105 | 90 |
表1 不同处理肥料施用量
Table 1 Different fertilizer application
处理Treatment | 秸秆Straw (t·hm-2) | 生物炭Biochar (t·hm-2) | N (kg·hm-2) | P2O5 (kg·hm-2) | K2O (kg·hm-2) |
---|---|---|---|---|---|
对照CK | 0.0 | 0.0 | 330 | 105 | 90 |
低量秸秆SI | 3.5 | 0.0 | 330 | 105 | 90 |
中量秸秆SII | 7.0 | 0.0 | 330 | 105 | 90 |
高量秸秆SIII | 10.5 | 0.0 | 330 | 105 | 90 |
低量生物炭BCI | 0.0 | 3.4 | 330 | 105 | 90 |
中量生物炭BCII | 0.0 | 6.8 | 330 | 105 | 90 |
高量生物炭BCIII | 0.0 | 10.2 | 330 | 105 | 90 |
土壤酶 Soil enzyme | 缩写 Abbreviations | 反应底物 Substrates |
---|---|---|
β-葡糖苷酶β-glucosidase | BG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖苷4-Methylumbelliferyl-β-D-glucopyranoside |
α-纤维素酶α-D-cellobiohydrolase | CBH | 4-甲基伞形酮酰-b-D-纤维二糖苷4-Methylumbelliferyl-b-D-cellobioside |
β-乙酰葡糖胺糖苷酶β-acetylgucosaminidase | NAG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖酸苷4-Methylumbelliferyl-β-D-glucosaminide |
亮氨酸氨基肽酶Leucine aminopeptidase | LAP | L-亮氨酸-7-氨基-4-盐酸甲基香豆素L-Leucine-7-amido-4-methylcoumarin hydrochloride |
碱性磷酸酶Alkaline phosphatase | AKP | 4-甲基伞形酮酰-磷酸酯4-Methylumbelliferyl phosphate |
表2 土壤酶种类、缩写以及底物
Table 2 The abbreviations of types and substrates of soil enzyme
土壤酶 Soil enzyme | 缩写 Abbreviations | 反应底物 Substrates |
---|---|---|
β-葡糖苷酶β-glucosidase | BG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖苷4-Methylumbelliferyl-β-D-glucopyranoside |
α-纤维素酶α-D-cellobiohydrolase | CBH | 4-甲基伞形酮酰-b-D-纤维二糖苷4-Methylumbelliferyl-b-D-cellobioside |
β-乙酰葡糖胺糖苷酶β-acetylgucosaminidase | NAG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖酸苷4-Methylumbelliferyl-β-D-glucosaminide |
亮氨酸氨基肽酶Leucine aminopeptidase | LAP | L-亮氨酸-7-氨基-4-盐酸甲基香豆素L-Leucine-7-amido-4-methylcoumarin hydrochloride |
碱性磷酸酶Alkaline phosphatase | AKP | 4-甲基伞形酮酰-磷酸酯4-Methylumbelliferyl phosphate |
处理 Treatment | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P |
---|---|---|---|---|---|
对照CK | 3.72±0.18c | 0.37±0.01a | 0.50±0.01b | 10.12±0.65a | 7.45±0.26b |
低量秸秆SI | 3.94±0.26b | 0.37±0.01a | 0.51±0.00b | 10.71±0.89a | 7.67±0.51ab |
中量秸秆SII | 3.98±0.01ab | 0.38±0.01a | 0.52±0.01ab | 10.58±0.33a | 7.59±0.18ab |
高量秸秆SIII | 4.14±0.17a | 0.38±0.02a | 0.51±0.05b | 10.94±0.57a | 8.17±0.14a |
低量生物炭BCI | 3.94±0.13b | 0.36±0.00a | 0.51±0.00b | 10.91±0.49a | 7.70±0.31ab |
中量生物炭BCII | 4.03±0.01ab | 0.37±0.00a | 0.52±0.01ab | 10.85±0.06a | 7.71±0.11ab |
高量生物炭BCIII | 4.15±0.34a | 0.38±0.02a | 0.55±0.00a | 10.83±0.33a | 7.54±0.66ab |
处理 Treatment | 氮磷比 N/P | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效氮磷比 Available N/P | |
对照CK | 0.74±0.02ab | 18.00±0.12d | 6.70±0.16b | 2.75±0.14b | |
低量秸秆SI | 0.72±0.01abc | 20.33±0.60c | 6.95±0.09b | 2.91±0.07ab | |
中量秸秆SII | 0.72±0.01abc | 24.07±0.79b | 7.40±0.21b | 3.24±0.12a | |
高量秸秆SIII | 0.75±0.03a | 25.09±1.02b | 7.45±1.05b | 3.40±0.43a | |
低量生物炭BCI | 0.71±0.00bc | 24.05±1.16b | 7.25±0.71b | 3.46±0.55a | |
中量生物炭BCII | 0.71±0.01abc | 25.07±1.06b | 7.72±0.13b | 3.39±0.23a | |
高量生物炭BCIII | 0.70±0.04c | 27.78±0.61a | 8.82±0.21a | 3.23±0.09ab |
表3 秸秆及生物炭还田下土壤碳、氮、磷浓度及其化学计量比
Table 3 Soil C, N and P concentration and their stoichiometric ratio under biochar and straw treatments
处理 Treatment | 有机碳 Organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P |
---|---|---|---|---|---|
对照CK | 3.72±0.18c | 0.37±0.01a | 0.50±0.01b | 10.12±0.65a | 7.45±0.26b |
低量秸秆SI | 3.94±0.26b | 0.37±0.01a | 0.51±0.00b | 10.71±0.89a | 7.67±0.51ab |
中量秸秆SII | 3.98±0.01ab | 0.38±0.01a | 0.52±0.01ab | 10.58±0.33a | 7.59±0.18ab |
高量秸秆SIII | 4.14±0.17a | 0.38±0.02a | 0.51±0.05b | 10.94±0.57a | 8.17±0.14a |
低量生物炭BCI | 3.94±0.13b | 0.36±0.00a | 0.51±0.00b | 10.91±0.49a | 7.70±0.31ab |
中量生物炭BCII | 4.03±0.01ab | 0.37±0.00a | 0.52±0.01ab | 10.85±0.06a | 7.71±0.11ab |
高量生物炭BCIII | 4.15±0.34a | 0.38±0.02a | 0.55±0.00a | 10.83±0.33a | 7.54±0.66ab |
处理 Treatment | 氮磷比 N/P | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效氮磷比 Available N/P | |
对照CK | 0.74±0.02ab | 18.00±0.12d | 6.70±0.16b | 2.75±0.14b | |
低量秸秆SI | 0.72±0.01abc | 20.33±0.60c | 6.95±0.09b | 2.91±0.07ab | |
中量秸秆SII | 0.72±0.01abc | 24.07±0.79b | 7.40±0.21b | 3.24±0.12a | |
高量秸秆SIII | 0.75±0.03a | 25.09±1.02b | 7.45±1.05b | 3.40±0.43a | |
低量生物炭BCI | 0.71±0.00bc | 24.05±1.16b | 7.25±0.71b | 3.46±0.55a | |
中量生物炭BCII | 0.71±0.01abc | 25.07±1.06b | 7.72±0.13b | 3.39±0.23a | |
高量生物炭BCIII | 0.70±0.04c | 27.78±0.61a | 8.82±0.21a | 3.23±0.09ab |
图1 秸秆及生物炭还田下土壤微生物生物量碳、氮、磷含量及其化学计量比不同字母表示处理间差异显著(P<0.05)。下同。Different letters indicate significant differences among treatments at P<0.05 level. The same below.
Fig.1 Soil microbial biomass C, N and P content and their stoichiometric ratio under biochar and straw treatments
指标 Index | β-葡糖 苷酶 BG | 亮氨酸氨 基肽酶 LAP | β-乙酰葡糖 胺糖苷酶 NAG | 碱性磷 酸酶 AKP | 微生物 量碳 MBC | 微生物 量氮 MBN | 酶碳氮比 (BG+CBH)/(NAG+LAP) | 酶碳磷比 (BG+CBH)/AKP | 酶氮磷比(NAG+LAP)/AKP | 微生物氮磷比 MBN/MBP |
---|---|---|---|---|---|---|---|---|---|---|
有机碳SOC | 0.39 | 0.44 | 0.49 | -0.63* | 0.39 | 0.29 | 0.02 | 0.61* | 0.64* | 0.40 |
全氮TN | 0.03 | 0.18 | 0.35 | -0.44 | 0.42 | 0.41 | -0.17 | 0.34 | 0.42 | 0.50 |
全磷TP | -0.09 | 0.21 | 0.40 | -0.39 | 0.33 | 0.42 | -0.36 | 0.26 | 0.39 | 0.30 |
碳氮比C/N | 0.41 | 0.46 | 0.44 | -0.51 | 0.26 | 0.17 | 0.03 | 0.52 | 0.54 | 0.17 |
碳磷比C/P | 0.73** | 0.43 | 0.36 | -0.55 | 0.26 | 0.01 | 0.47 | 0.67* | 0.56 | 0.39 |
氮磷比N/P | 0.44 | -0.18 | -0.33 | 0.10 | -0.12 | -0.37 | 0.76** | 0.10 | -0.14 | 0.26 |
速效氮AN | 0.80** | 0.80** | 0.83** | -0.88** | 0.87** | 0.64* | 0.29 | 0.92** | 0.90** | 0.79** |
速效磷AP | 0.28 | 0.40 | 0.56 | -0.61* | 0.51 | 0.42 | -0.10 | 0.55 | 0.62* | 0.57 |
速效氮磷比AN/AP | 0.83** | 0.72** | 0.63* | -0.66* | 0.72** | 0.48 | 0.47 | 0.77** | 0.68* | 0.57 |
表4 秸秆还田下土壤与微生物、胞外酶之间C、N、P含量及其化学计量特征的相关性分析
Table 4 Correlation analysis of C, N and P contents and their stoichiometric characteristics among soil, microbial and enzyme under straw treatments
指标 Index | β-葡糖 苷酶 BG | 亮氨酸氨 基肽酶 LAP | β-乙酰葡糖 胺糖苷酶 NAG | 碱性磷 酸酶 AKP | 微生物 量碳 MBC | 微生物 量氮 MBN | 酶碳氮比 (BG+CBH)/(NAG+LAP) | 酶碳磷比 (BG+CBH)/AKP | 酶氮磷比(NAG+LAP)/AKP | 微生物氮磷比 MBN/MBP |
---|---|---|---|---|---|---|---|---|---|---|
有机碳SOC | 0.39 | 0.44 | 0.49 | -0.63* | 0.39 | 0.29 | 0.02 | 0.61* | 0.64* | 0.40 |
全氮TN | 0.03 | 0.18 | 0.35 | -0.44 | 0.42 | 0.41 | -0.17 | 0.34 | 0.42 | 0.50 |
全磷TP | -0.09 | 0.21 | 0.40 | -0.39 | 0.33 | 0.42 | -0.36 | 0.26 | 0.39 | 0.30 |
碳氮比C/N | 0.41 | 0.46 | 0.44 | -0.51 | 0.26 | 0.17 | 0.03 | 0.52 | 0.54 | 0.17 |
碳磷比C/P | 0.73** | 0.43 | 0.36 | -0.55 | 0.26 | 0.01 | 0.47 | 0.67* | 0.56 | 0.39 |
氮磷比N/P | 0.44 | -0.18 | -0.33 | 0.10 | -0.12 | -0.37 | 0.76** | 0.10 | -0.14 | 0.26 |
速效氮AN | 0.80** | 0.80** | 0.83** | -0.88** | 0.87** | 0.64* | 0.29 | 0.92** | 0.90** | 0.79** |
速效磷AP | 0.28 | 0.40 | 0.56 | -0.61* | 0.51 | 0.42 | -0.10 | 0.55 | 0.62* | 0.57 |
速效氮磷比AN/AP | 0.83** | 0.72** | 0.63* | -0.66* | 0.72** | 0.48 | 0.47 | 0.77** | 0.68* | 0.57 |
指标 Index | β-葡糖苷酶 BG | α-纤维素酶 CBH | 亮氨酸氨基肽酶 LAP | β-乙酰葡糖胺糖苷酶NAG | 碱性磷酸酶 AKP | 微生物量碳 MBC | 微生物量氮 MBN |
---|---|---|---|---|---|---|---|
有机碳SOC | 0.53 | 0.52 | 0.65* | 0.61* | -0.18 | 0.77** | 0.63* |
全氮TN | 0.56 | 0.42 | 0.38 | 0.50 | 0.07 | 0.65* | 0.43 |
全磷TP | 0.89** | 0.95** | 0.86** | 0.97** | 0.09 | 0.92** | 0.94** |
碳氮比C/N | 0.20 | 0.29 | 0.52 | 0.39 | -0.35 | 0.49 | 0.45 |
碳磷比C/P | -0.05 | -0.13 | 0.09 | 0.01 | -0.27 | 0.22 | 0.01 |
氮磷比N/P | -0.31 | -0.51 | -0.56 | -0.45 | 0.11 | -0.33 | -0.56 |
速效氮AN | 0.68* | 0.79** | 0.97** | 0.71** | -0.34 | 0.91** | 0.93** |
速效磷AP | 0.87** | 0.88** | 0.85** | 0.89** | 0.03 | 0.91** | 0.90** |
速效氮磷比AN/AP | 0.06 | 0.22 | 0.55 | 0.09 | -0.60* | 0.38 | 0.43 |
指标 Index | 微生物量磷 MBP | 酶碳磷比 (BG+CBH)/AKP | 酶氮磷比 (NAG+LAP)/AKP | 微生物碳氮比MBC/MBN | 微生物碳磷比MBC/MBP | 微生物氮磷比MBN/MBP | |
有机碳SOC | 0.55 | 0.62* | 0.61* | -0.63* | -0.46 | 0.18 | |
全氮TN | 0.03 | 0.57 | 0.28 | -0.28 | 0.11 | 0.51 | |
全磷TP | 0.47 | 0.93** | 0.67* | -0.83** | -0.35 | 0.66* | |
碳氮比C/N | 0.71** | 0.33 | 0.58* | -0.58* | -0.71* | -0.21 | |
碳磷比C/P | 0.30 | 0.02 | 0.19 | -0.10 | -0.28 | -0.30 | |
氮磷比N/P | -0.58* | -0.37 | -0.51 | 0.65* | 0.61* | -0.05 | |
速效氮AN | 0.82** | 0.84** | 0.93** | -0.96** | -0.73** | 0.26 | |
速效磷AP | 0.51 | 0.91** | 0.69* | -0.79** | -0.37 | 0.57 | |
速效氮磷比AN/AP | 0.72** | 0.27 | 0.69* | -0.65* | -0.74** | -0.27 |
表5 生物炭还田下土壤与微生物、胞外酶之间C、N、P含量及其化学计量特征的相关性分析
Table 5 Correlation analysis of C, N and P contents and their stoichiometric characteristics among soil, microbial and enzyme under biochar treatments
指标 Index | β-葡糖苷酶 BG | α-纤维素酶 CBH | 亮氨酸氨基肽酶 LAP | β-乙酰葡糖胺糖苷酶NAG | 碱性磷酸酶 AKP | 微生物量碳 MBC | 微生物量氮 MBN |
---|---|---|---|---|---|---|---|
有机碳SOC | 0.53 | 0.52 | 0.65* | 0.61* | -0.18 | 0.77** | 0.63* |
全氮TN | 0.56 | 0.42 | 0.38 | 0.50 | 0.07 | 0.65* | 0.43 |
全磷TP | 0.89** | 0.95** | 0.86** | 0.97** | 0.09 | 0.92** | 0.94** |
碳氮比C/N | 0.20 | 0.29 | 0.52 | 0.39 | -0.35 | 0.49 | 0.45 |
碳磷比C/P | -0.05 | -0.13 | 0.09 | 0.01 | -0.27 | 0.22 | 0.01 |
氮磷比N/P | -0.31 | -0.51 | -0.56 | -0.45 | 0.11 | -0.33 | -0.56 |
速效氮AN | 0.68* | 0.79** | 0.97** | 0.71** | -0.34 | 0.91** | 0.93** |
速效磷AP | 0.87** | 0.88** | 0.85** | 0.89** | 0.03 | 0.91** | 0.90** |
速效氮磷比AN/AP | 0.06 | 0.22 | 0.55 | 0.09 | -0.60* | 0.38 | 0.43 |
指标 Index | 微生物量磷 MBP | 酶碳磷比 (BG+CBH)/AKP | 酶氮磷比 (NAG+LAP)/AKP | 微生物碳氮比MBC/MBN | 微生物碳磷比MBC/MBP | 微生物氮磷比MBN/MBP | |
有机碳SOC | 0.55 | 0.62* | 0.61* | -0.63* | -0.46 | 0.18 | |
全氮TN | 0.03 | 0.57 | 0.28 | -0.28 | 0.11 | 0.51 | |
全磷TP | 0.47 | 0.93** | 0.67* | -0.83** | -0.35 | 0.66* | |
碳氮比C/N | 0.71** | 0.33 | 0.58* | -0.58* | -0.71* | -0.21 | |
碳磷比C/P | 0.30 | 0.02 | 0.19 | -0.10 | -0.28 | -0.30 | |
氮磷比N/P | -0.58* | -0.37 | -0.51 | 0.65* | 0.61* | -0.05 | |
速效氮AN | 0.82** | 0.84** | 0.93** | -0.96** | -0.73** | 0.26 | |
速效磷AP | 0.51 | 0.91** | 0.69* | -0.79** | -0.37 | 0.57 | |
速效氮磷比AN/AP | 0.72** | 0.27 | 0.69* | -0.65* | -0.74** | -0.27 |
1 | Xu M G, Yu R, Wang B R. Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedologica Sinica, 2006, 43(5): 723-729. |
徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化. 土壤学报, 2006, 43(5): 723-729. | |
2 | Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 10967-10972. |
3 | Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biology and Biochemistry, 2016, 98: 74-84. |
4 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 457-467. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 457-467. | |
5 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151. |
6 | Xu Q, Rui W Y, Liu J L, et al. Spatial vatiation of coupling characteristics of soil carbon and nitrogen in farmland of China. Journal of Ecology and Rural Environment, 2006, 22(3): 57-60. |
许泉, 芮雯奕, 刘家龙, 等. 我国农田土壤碳氮耦合特征的区域差异. 生态与农村环境学报, 2006, 22(3): 57-60. | |
7 | Li Y, Wu J S, Liu S L, et al. Is the C∶N∶P stoichiometry in soil and soil microbial biomass related to the landscape and land use in Southern subtropical China? Global Biogeochemical Cycles, 2012, 26(4): 4002. |
8 | Wang C J, Wang Q Q, Xu H, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 2018, 38(11): 3848-3858. |
王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018, 38(11): 3848-3858. | |
9 | Hill B H, Elonen C M, Jicha T M, et al. Sediment microbial enzyme activity as an indicator of nutrient limitation in the great rivers of the Upper Mississippi River basin. Biogeochemistry, 2010, 97(2/3): 195-209. |
10 | Hill B H, Elonen C M, Seifert L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecological Indicator, 2012, 18(4): 540-551. |
11 | Sinsabaugh R L, Hill B H, Follstad S J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798. |
12 | Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the north-south Transect in Eastern China (Nstec). Soil Biology & Biochemistry, 2017, 104: 152-163. |
13 | Zhang X X, Yang L M, Chen Z, et al. Patterns of eco-enzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas. Acta Ecologica Sinica, 2018, 38(16): 5828-5836. |
张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 2018, 38(16): 5828-5836. | |
14 | Bao S D. Soil agrochemical analysis (3rd Edition). Beijing: China Agricultural Press, 2000: 30-177. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 30-177. | |
15 | Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass. Soil Biology & Biochemistry, 2004, 36(1): 5-7. |
16 | Marxa M C, Wooda M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 2001, 33(12/13): 1633-1640. |
17 | Luo M, Tian D, Gao M, et al. Soil organic carbon of purple soil as affected by different application of biochar. Environmental Science, 2018, 39(9): 4327-4337. |
罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应. 环境科学, 2018, 39(9): 4327-4337. | |
18 | Li C, Li X P. Effect of biochar preparation and its application amount on soil carbon pool and plant growth. Journal of Southern Agriculture, 2015, 46(10): 1786-1791. |
李程, 李小平. 生物炭制备及不同施用量对土壤碳库和植物生长的影响. 南方农业学报, 2015, 46(10): 1786-1791. | |
19 | Li J, Chi F Q, Wei D, et al. Effects of different organic materials returning to field on the content of active organic carbon in black soil. Soybean Science, 2016, 35(6): 975-980. |
李婧, 迟凤琴, 魏丹, 等. 不同有机物料还田对黑土活性有机碳组分含量的影响. 大豆科学, 2016, 35(6): 975-980. | |
20 | Niu Z Y, Yan S, Guo Q Q, et al. Effects of biochar on yield an quality of flue-cured tobacco and nutrients and carbon pool in two typical soils planted with tobacco. Chinese Journal of Soil Science, 2017, 48(1): 155-161. |
牛政洋, 闫伸, 郭青青, 等. 生物炭对两种典型植烟土壤养分、碳库及烤烟产质量的影响. 土壤通报, 2017, 48(1): 155-161. | |
21 | Guo C L, Li N, Peng J, et al. Direct returning of maize straw or as biochar to the field triggers change in acidity and exchangeable capacity in soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 79-87. |
郭春雷, 李娜, 彭靖, 等. 秸秆直接还田及炭化还田对土壤酸度和交换性能的影响. 植物营养与肥料学报, 2018, 24(5): 79-87. | |
22 | Chapin F S, Matson P A, Vitousek P M, et al. Principles of terrestrial ecosystem ecology. New York: Springer, Principles of Terrestrial Ecosystem Ecology, 2011: 15-17. |
23 | Jia Y, Xu B C, Li F M, et al. Availability and contributions of soil phosphorus to forage production of seeded alfalfa in semiarid Loess Plateau. Acta Ecologica Sinica, 2007, 27(1): 42-47. |
贾宇, 徐炳成, 李凤民, 等. 半干旱黄土丘陵区苜蓿人工草地土壤磷素有效性及对生产力的响应. 生态学报, 2007, 27(1): 42-47. | |
24 | Hu P L, Wang K L, Zeng Z X, et al. Ecological stoichiometric characteristics of plants, soil, and microbes of Pennisetum purpureum cv. Guimu-1 pastures at different rehabilitation ages in a karst rocky desertification region. Acta Ecologica Sinica, 2017, 37(3): 896-905. |
胡培雷, 王克林, 曾昭霞, 等. 喀斯特石漠化地区不同退耕年限下桂1号杂交象草植物-土壤-微生物生态化学计量特征. 生态学报, 2017, 37(3): 896-905. | |
25 | Han W, Shen S H, Xie Z B, et al. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil. Acta Ecologica Sinica, 2016, 36(18): 5838-5846. |
韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响. 生态学报, 2016, 36(18): 5838-5846. | |
26 | Wu R M, Wang Y P, Li F M, et al. Effects of coupling film-mulched furrow-ridge cropping with maize straw soil-incorporation on maize yields and soil organic carbon pool at a semiarid loess site of China. Acta Ecologica Sinica, 2012, 32(9): 2855-2862. |
吴荣美, 王永鹏, 李凤民, 等. 秸秆还田与全膜双垄集雨沟播耦合对半干旱黄土高原玉米产量和土壤有机碳库的影响. 生态学报, 2012, 32(9): 2855-2862. | |
27 | Lehmann J, Rillig M, Thies J, et al. Biochar effects on soil biota: A review. Soil Biology & Biochemistry, 2011, 43(9): 1812-1836. |
28 | Zhang X, Liu X R, Zhang Q W, et al. Effects of biochar and straw direct return on soil microbial biomass during maize growth season in North China plain. Journal of Agro-Environment Science, 2015, 34(10): 1943-1950. |
张星, 刘杏认, 张晴雯, 等. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响. 农业环境科学学报, 2015, 34(10): 1943-1950. | |
29 | Zhou F, Geng Z C, Xu C Y, et al. Effect of biochar addition on soil microbial and metabolic activities of carbon sources in Lou soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1277-1289. |
周凤, 耿增超, 许晨阳, 等. 生物炭用量对(土娄)土微生物量及碳源代谢活性的影响. 植物营养与肥料学报, 2019, 25(8): 1277-1289. | |
30 | Wang Q, Geng Z C, Xu C Y, et al. Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou Soil. Environmental Science, 2020, 5(41): 2425-2433. |
王强, 耿增超, 许晨阳, 等. 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响. 环境科学, 2020, 5(41): 2425-2433. | |
31 | Heuch C, Weig A, Spohn M. Soil microbial biomass C∶N∶P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 2015, 85: 119-129. |
32 | Xu X F, Thornton P E, Post W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22(6): 737-749. |
33 | Ju X T, Liu X J, Zhang F S. Effects of long-term fertilization on soil organic nitrogen fractions. Scientia Agricultura Sinica, 2004, 37(1): 87-91. |
巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响. 中国农业科学, 2004, 37(1): 87-91. | |
34 | Wang S. The effect on long-term loading and fertilizer on microorganisms in the black soil.Harbin: Harbin Institute of Technology, 2006. |
王爽. 黑土长期定位施肥对土壤微生物的影响. 哈尔滨: 哈尔滨工业大学, 2006. | |
35 | Peng P Q, Wu J S, Huang D Y, et al. Microbial biomass C, N, P of farmland soils in different land uses and cropping systems in Dongting Lake region. Acta Ecologica Sinica, 2006, 26(7): 2261-2267. |
彭佩钦, 吴金水, 黄道友, 等. 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 2006, 26(7): 2261-2267. | |
36 | Qiao H, Mo X Q, Luo Y H, et al. Patterns of soil eco-enzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations. Acta Ecologica Sinica, 2019, 39(6): 1887-1896. |
乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素. 生态学报, 2019, 39(6): 1887-1896. | |
37 | Wu X Z, Yan X, Wang B, et al. Effects of desertification on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland. Chinese Journal of Plant Ecology, 2018, 42(10): 50-60. |
吴秀芝, 阎欣, 王波, 等. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 2018, 42(10): 50-60. |
[1] | 李新旺,门明新,王树涛,齐跃普,许皞. 长期施肥对华北平原潮土作物产量及农田养分平衡的影响[J]. 草业学报, 2009, 18(1): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||