1 |
Wang J, Sun J, Yu Z, et al. Vegetation type controls root turnover in global grasslands. Global Ecology and Biogeography, 2019, 28(4): 442-455.
|
2 |
Sun Y, Yang Y, Zhao X, et al. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences, 2021, 64(5): 739-751.
|
3 |
Pucheta E, Bonamici I, Cabido M, et al. Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecology, 2004(29): 201-208.
|
4 |
Zhang D D, Wang X M, Zan M. Estimation of vegetation aboveground biomass in the Wei-Ku Oasis based on Landsat 8 OLI images. Acta Prataculturae Sinica, 2021, 30(11): 1-12.
|
|
张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算. 草业学报, 2021, 30(11): 1-12.
|
5 |
Ghasemi N, Sahebi M R, Mohammadzadeh A. A review on biomass estimation methods using synthetic aperture radar data. International Journal of Geomatics and Geosciences, 2011, 1(4): 776-788.
|
6 |
Sinha S, Jeganathan C, Sharma L K, et al. A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology, 2015, 12(5): 1779-1792.
|
7 |
Tang Z, Deng L, An H, et al. Bayesian method predicts belowground biomass of natural grasslands. Ecoscience, 2017, 24(3): 1-10.
|
8 |
Fierer N, Strickland M S, Liptzin D, et al. Global patterns in belowground communities. Ecology Letters, 2009, 12(11): 1238-1249.
|
9 |
Fan J W, Wang K, Harris W, et al. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 2009, 73(4/5): 521-528.
|
10 |
Lopatin J, Kattenborn T, Galleguillos M, et al. Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocks. Remote Sensing of Environment, 2019, 231: 111217.
|
11 |
Luo W, Jiang Y, Lv X, et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS One, 2013, 8(8): e71749.
|
12 |
Fiala K, Tůma I, Holub P. Interannual variation in root production in grasslands affected by artificially modified amount of rainfall. Scientific World Journal, 2012, 2012: 805298.
|
13 |
Gill R A, Kelly R H, Parton W J, et al. Using simple environmental variables to estimate below- ground productivity in grasslands. Global Ecology & Biogeography, 2002, 11: 79-86.
|
14 |
Qiao Y X, Zhu H Z, Zhong H P, et al. Spatial interpolation analysis of grassland below-ground biomass in the Inner Mongolia Autonomous Region, China. Acta Prataculturae Sinica, 2016, 25(6): 1-12.
|
|
乔宇鑫, 朱华忠, 钟华平, 等. 内蒙古草地地下生物量空间格局分析. 草业学报, 2016, 25(6): 1-12.
|
15 |
Li H, Jia S, Le Z. Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors, 2019, 19(20): 4355.
|
16 |
O’Connell J L, Byrd K B, Kelly M. A hybrid model for mapping relative differences in belowground biomass and root∶shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh. Remote Sensing, 2015, 7(12): 16480-16503.
|
17 |
Zhao H H, Li X D, Zhang D, et al. Aboveground biomass in grasslands in Qinghai Province estimated from MODIS data and its influencing factors. Acta Prataculturae Sinica, 2020, 29(12): 5-16.
|
|
赵慧芳, 李晓东, 张东, 等. 基于MODIS数据的青海省草地地上生物量估算及影响因素研究. 草业学报, 2020, 29(12): 5-16.
|
18 |
Bernhardt-Römermann M, Römermann C, Sperlich S, et al. Explaining grassland biomass-the contribution of climate, species and functional diversity depends on fertilization and mowing frequency. Journal of Applied Ecology, 2011, 48(5): 1088-1097.
|
19 |
Schenk H J, Jackson R B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 2002, 90(3): 480-494.
|
20 |
Ma X X, Yan Y, Lu X Y, et al. Dynamics of belowground biomass and its relationship with soil moisture in alpine grassland on the North Tibetan Plateau. Ecology and Environmental Sciences, 2016, 25(2): 189-195.
|
|
马星星, 鄢燕, 鲁旭阳, 等.藏北高寒草地地下生物量特征及其与土壤水分的关系. 生态环境学报, 2016, 25(2): 189-195.
|
21 |
Zhu B W, Zhou H K, Xu Y X, et al. Study on seasonal dynamics of biomass in meadow grassland of north shore of Qinghai Lake. Pratacultural Science, 2008, 25(12): 62-66.
|
|
朱宝文, 周华坤, 徐有绪, 等. 青海湖北岸草甸草原牧草生物量季节动态研究. 草业科学, 2008, 25(12): 62-66.
|
22 |
Peng S, Piao S, Ciais P, et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature, 2013, 501: 88-92.
|
23 |
Mokany K, Raison R J, Prokushkin A S. Critical analysis of root∶shoot ratios in terrestrial biomes. Global Change Biology, 2006, 12: 84-96.
|
24 |
Leonid U, Yuriy R, Vasiliy U, et al. Impact of climate and grazing on biomass components of Eastern Russia typical steppe. Journal of Integrative Agriculture, 2014, 13(6): 1183-1192.
|
25 |
Didiano T J, Johnson M T J, Duval T P. Disentangling the effects of precipitation amount and frequency on the performance of 14 grassland species. PLoS One, 2016, 11(9): e162310.
|
26 |
Xia J, Liu S, Liang S, et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing, 2014, 6(3): 1783-1802.
|
27 |
Wang L, Niu K, Yang Y, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: Evidence from individual-level observations. Science China Life Sciences, 2010, 53(7): 851-857.
|
28 |
Hu T, Sørensen P, Wahlström E M, et al. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agriculture, Ecosystems & Environment, 2018, 251: 141-148.
|
29 |
Yang Y, Dou Y, An S. Environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. Ecological Indicators, 2017, 82: 250-259.
|
30 |
Li Y Z, Shao Q Q, Fan J W, et al. Effects of grassland cultivation on ecosystem water use efficiency in a grazed temperate grassland area. Acta Prataculturae Sinica, 2019, 28(10): 110-121.
|
|
李愈哲, 邵全琴, 樊江文, 等. 开垦对放牧温性草原生态系统水分利用效率的影响. 草业学报, 2019, 28(10): 110-121.
|
31 |
Yuen J Q, Ziegler A D, Webb E L, et al. Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia. Forest Ecology and Management, 2013, 310: 915-926.
|
32 |
Lauenroth W K, Wade A A, Williamson M A, et al. Uncertainty in calculations of net primary production for grasslands. Ecosystems, 2006, 9(5): 843-851.
|
33 |
Wilson C H, Strickland M S, Hutchings J A, et al. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Global Change Biology, 2018, 24(7): 2997-3009.
|
34 |
Ren Q, Ai Y, Hu J, et al. Effects of different yak grazing intensities on soil land plant biomass in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2021, 41(17): 6862-6870.
|
|
任强, 艾鷖, 胡健, 等. 不同强度牦牛放牧对青藏高原高寒草地土壤和植物生物量的影响. 生态学报, 2021, 41(17): 6862-6870.
|
35 |
Loretta C, Johnson J R M. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology, 2001, 82(12): 3377-3389.
|
36 |
Frank D A. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia, 2007, 152(1): 131-139.
|
37 |
Hao Y, He Z. Effects of grazing patterns on grassland biomass and soil environments in China: A meta-analysis. PLoS One, 2019, 14(4): e215223.
|
38 |
Acosta-Gallo B, Casado M A, Montalvo J, et al. Allometric patterns of below-ground biomass in Mediterranean grasslands. Plant Biosystems, 2011, 145(3): 584-595.
|
39 |
Harpole W S, Sullivan L L, Lind E M, et al. Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537: 93-96.
|