草业学报 ›› 2023, Vol. 32 ›› Issue (1): 203-215.DOI: 10.11686/cyxb2021508
• 综合评述 • 上一篇
收稿日期:
2021-12-29
修回日期:
2022-06-01
出版日期:
2023-01-20
发布日期:
2022-11-07
通讯作者:
方香玲
作者简介:
E-mail: xlf@lzu.edu.cn基金资助:
Cai-xia ZHANG(), Xiang-ling FANG()
Received:
2021-12-29
Revised:
2022-06-01
Online:
2023-01-20
Published:
2022-11-07
Contact:
Xiang-ling FANG
摘要:
草类植物病害是限制草牧业生产和发展的主要因素之一。目前抗病品种的开发利用是目前防治病害最经济有效的方法,植物抗病机制的研究对开发抗病品种和构建生态环境友好型病害防治至关重要。植物受病原菌侵染时形成多种复杂的防御机制,本研究主要从植物组织结构抗性、生理生化抗性、抗性基因和抗性数量性状位点(QTLs)定位等分子机制方面综述草类植物抗病机制研究进展,并提出我国草类植物抗病机制研究中面临的主要问题与解决办法,以期为草类植物抗病育种提供理论依据。
张彩霞, 方香玲. 草类植物抗病机制研究进展[J]. 草业学报, 2023, 32(1): 203-215.
Cai-xia ZHANG, Xiang-ling FANG. Research advances in disease resistance mechanism of herbaceous plants[J]. Acta Prataculturae Sinica, 2023, 32(1): 203-215.
寄主类别 Host type | 寄主植物 Host plant | 病害 Disease | 病原 Pathogen | 遗传方式 Inheritance | 基因 Gene | 参考文献 References |
---|---|---|---|---|---|---|
豆科 Legumes | 紫花苜蓿 M. sativa | 炭疽病 Anthracnose | 三叶草炭疽菌小种1号 C. trifolii race 1 | 显性Dominance | An1 | [ |
三叶草炭疽菌小种1和2号C. trifolii race 1 and 2 | 显性Dominance | An2 | [ | |||
霜霉病 Downy mildew | 三叶草叶斑病假单胞菌 Peronospora trifoliorum | 不完全显性Incomplete dominance | Dm | [ | ||
显性Dominance | PtR1-5 | [ | ||||
镰刀菌枯萎病 Fusarium wilt | 尖孢镰刀菌苜蓿专化型 F. oxysporum f. sp.medicaginis | 显性Dominance | FW1 | [ | ||
不完全显性,加性Incomplete dominance, additive | FW2 | [ | ||||
疫霉根腐病 Phytophthora root rot | 疫霉P. medicaginis | 隐性Recessive | Pm | [ | ||
显性Dominance | Pm1, Pm2 | [ | ||||
显性Dominance | Pm3, Pm4 | [ | ||||
显性Dominance | Pm5, Pm6 | [ | ||||
蒺藜苜蓿 M. truncatula | 炭疽病 Anthracnose | 三叶草炭疽菌C. trifolii | 显性Dominance | RCT1 | [ | |
豌豆丝囊菌根腐病Aphanomyces root rot | 卵菌根腐丝囊霉A. euteiches | 显性Dominance | AER1 | [ | ||
隐性Recessive | prAe1 | [ | ||||
柱花草 S. guianensis | 炭疽病 Anthracnose | 长孢炭疽菌C. gloeosporioides | 未知Unknown | SgPAL1, PAL | [ | |
禾本科 Gramineae | 燕麦 A. sativa | 白粉病 Powdery mildew | 禾本科布氏白粉菌Blumeria graminis | 显性Dominance | Eg-1, Eg-3, Eg-5 | [ |
显性Dominance | Pm1~5, Pm7~11 | [ | ||||
隐性Recessive | Pm6 | [ | ||||
显性Dominance | OMR1, OMR2, OMR3 | [ | ||||
锈病Rust | 秆锈病菌P. graminis | 未知Unknown | Pg1~4, Pg6, Pg8~13, Pg15~16, Pg19 | [ | ||
冠锈病菌P. coronata | 未知Unknown | Pc38, Pc39, Pc48, Pc53, Pc54, Pc58, Pc68, Pc71, Pc91, Pc94 | [ | |||
显性Dominance | Pc62 | [ | ||||
结缕草 Z. japonica | 褐斑病Brown blot | 立枯丝核菌R. solani | 未知Unknown | NCED | [ | |
草地早熟禾P. pratensis | 锈病Rust | 秆锈病菌P. graminis | 未知Unknown | PR1L, NPR1L | [ |
表1 草类植物抗病基因
Table 1 Disease resistance genes of herbaceous plants
寄主类别 Host type | 寄主植物 Host plant | 病害 Disease | 病原 Pathogen | 遗传方式 Inheritance | 基因 Gene | 参考文献 References |
---|---|---|---|---|---|---|
豆科 Legumes | 紫花苜蓿 M. sativa | 炭疽病 Anthracnose | 三叶草炭疽菌小种1号 C. trifolii race 1 | 显性Dominance | An1 | [ |
三叶草炭疽菌小种1和2号C. trifolii race 1 and 2 | 显性Dominance | An2 | [ | |||
霜霉病 Downy mildew | 三叶草叶斑病假单胞菌 Peronospora trifoliorum | 不完全显性Incomplete dominance | Dm | [ | ||
显性Dominance | PtR1-5 | [ | ||||
镰刀菌枯萎病 Fusarium wilt | 尖孢镰刀菌苜蓿专化型 F. oxysporum f. sp.medicaginis | 显性Dominance | FW1 | [ | ||
不完全显性,加性Incomplete dominance, additive | FW2 | [ | ||||
疫霉根腐病 Phytophthora root rot | 疫霉P. medicaginis | 隐性Recessive | Pm | [ | ||
显性Dominance | Pm1, Pm2 | [ | ||||
显性Dominance | Pm3, Pm4 | [ | ||||
显性Dominance | Pm5, Pm6 | [ | ||||
蒺藜苜蓿 M. truncatula | 炭疽病 Anthracnose | 三叶草炭疽菌C. trifolii | 显性Dominance | RCT1 | [ | |
豌豆丝囊菌根腐病Aphanomyces root rot | 卵菌根腐丝囊霉A. euteiches | 显性Dominance | AER1 | [ | ||
隐性Recessive | prAe1 | [ | ||||
柱花草 S. guianensis | 炭疽病 Anthracnose | 长孢炭疽菌C. gloeosporioides | 未知Unknown | SgPAL1, PAL | [ | |
禾本科 Gramineae | 燕麦 A. sativa | 白粉病 Powdery mildew | 禾本科布氏白粉菌Blumeria graminis | 显性Dominance | Eg-1, Eg-3, Eg-5 | [ |
显性Dominance | Pm1~5, Pm7~11 | [ | ||||
隐性Recessive | Pm6 | [ | ||||
显性Dominance | OMR1, OMR2, OMR3 | [ | ||||
锈病Rust | 秆锈病菌P. graminis | 未知Unknown | Pg1~4, Pg6, Pg8~13, Pg15~16, Pg19 | [ | ||
冠锈病菌P. coronata | 未知Unknown | Pc38, Pc39, Pc48, Pc53, Pc54, Pc58, Pc68, Pc71, Pc91, Pc94 | [ | |||
显性Dominance | Pc62 | [ | ||||
结缕草 Z. japonica | 褐斑病Brown blot | 立枯丝核菌R. solani | 未知Unknown | NCED | [ | |
草地早熟禾P. pratensis | 锈病Rust | 秆锈病菌P. graminis | 未知Unknown | PR1L, NPR1L | [ |
寄主类别 Host type | 寄主植物 Host plant | 病害 Disease | 病原 Pathogen | 数量性状位点 Quantitative trait locus (QTLs) | 参考文献 References |
---|---|---|---|---|---|
豆科 Legumes | 蒺藜苜蓿 M. truncatula | 白粉病Powdery mildew | 豌豆白粉菌E. pisi | Epp1, Epa1, Epa2 | [ |
春季黑茎叶斑病Spring black stem and leaf spot | 苜蓿茎点霉Phoma medicaginis | rnpm1, rnpm2 | [ | ||
黄萎病Verticillium wilt | 黑白轮枝菌V. albo-atrum | MtVa1, MtVa2, MtVa3 | [ | ||
红三叶 T. pratense | 白粉病Powdery mildew | 三叶草白粉菌Erysiphe trifoliorum | qrp-1 | [ | |
禾本科 Gramineae | 燕麦A. sativa | 锈病Rust | 冠锈病菌P. coronata | Prq1a, Prq1b, Prq2, Prq7, Pcq1, Pcq2 | [ |
多年生黑麦 草L. perenne | 锈病Rust | 冠锈病菌P. coronata | LpPc1, LpPc2, LpPc3, LpPc4 | [ |
表2 草类植物数量性状位点
Table 2 Quantitative trait locus of herbaceous plants
寄主类别 Host type | 寄主植物 Host plant | 病害 Disease | 病原 Pathogen | 数量性状位点 Quantitative trait locus (QTLs) | 参考文献 References |
---|---|---|---|---|---|
豆科 Legumes | 蒺藜苜蓿 M. truncatula | 白粉病Powdery mildew | 豌豆白粉菌E. pisi | Epp1, Epa1, Epa2 | [ |
春季黑茎叶斑病Spring black stem and leaf spot | 苜蓿茎点霉Phoma medicaginis | rnpm1, rnpm2 | [ | ||
黄萎病Verticillium wilt | 黑白轮枝菌V. albo-atrum | MtVa1, MtVa2, MtVa3 | [ | ||
红三叶 T. pratense | 白粉病Powdery mildew | 三叶草白粉菌Erysiphe trifoliorum | qrp-1 | [ | |
禾本科 Gramineae | 燕麦A. sativa | 锈病Rust | 冠锈病菌P. coronata | Prq1a, Prq1b, Prq2, Prq7, Pcq1, Pcq2 | [ |
多年生黑麦 草L. perenne | 锈病Rust | 冠锈病菌P. coronata | LpPc1, LpPc2, LpPc3, LpPc4 | [ |
1 | Ameline-Torregrosa C, Cazaux M, Danesh D, et al. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Molecular Plant-Microbe Interactions, 2008, 21(1): 61-69. |
2 | Nan Z B. Establishing sustainable management system for diseases of pasture crops in China. Acta Prataculturae Sinica, 2000, 9(2): 1-9. |
南志标. 建立中国的牧草病害可持续管理体系. 草业学报, 2000, 9(2): 1-9. | |
3 | Chowdhury J, Henderson M, Schweizer P, et al. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytologist, 2014, 204(3): 650-660. |
4 | Fang X L, Zhang C X, Nan Z B. Research advances in Fusarium root rot of alfalfa (Medicago sativa). Acta Prataculturae Sinica, 2019, 28(12): 169-183. |
方香玲, 张彩霞, 南志标. 紫花苜蓿镰刀菌根腐病研究进展. 草业学报, 2019, 28(12): 169-183. | |
5 | Zasada I A, Halbrendt J M, Kokalis-Burelle N, et al. Managing nematodes without methyl bromide. Annual Review of Phytopathology, 2010, 48(1): 311-328. |
6 | Ding L N, Yang G X. Research advances in the mechanism and signal transduction of plant disease resistance. Biotechnology Bulletin, 2016, 32(10): 109-117. |
丁丽娜, 杨国兴. 植物抗病机制及信号转导的研究进展. 生物技术通报, 2016, 32(10): 109-117. | |
7 | Ma H L, Fang Y Y. Induction of plant disease resistance and its application for disease control in creeping bentgrass. Acta Prataculturae Sinica, 2014, 23(5): 312-320. |
马晖玲, 房媛媛. 植物抗病性及诱导抗性在匍匐翦股颖病害防治中的应用. 草业学报, 2014, 23(5): 312-320. | |
8 | Lacerda A F, Vasconcelos E A R, Pelegrini P B, et al. Antifungal defensins and their role in plant defense. Frontiers in Microbiology, 2014, 5: 116-126. |
9 | Flor H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9(1): 275-296. |
10 | Niks R E, Rubiales D. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 2002, 124(2): 201-216. |
11 | Zhang Q H, Li X M, Long X Y, et al. Metabolism of the cutin and wax of plants and their disease resistance mechanisms. Journal of Zhejiang A & F University, 2020, 37(6): 1207-1215. |
张启辉, 李晓曼, 龙希洋, 等. 植物角质蜡质代谢及抗病机制研究. 浙江农林大学学报, 2020, 37(6): 1207-1215. | |
12 | Patto M C V, Rubiales D. Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species. Frontiers Plant Science, 2014, 5(5): 618-624. |
13 | Ye W X, Munemasa S, Shinya T, et al. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proceedings of the National Academy of Sciences, 2020, 117(34): 20932-20942. |
14 | Yu B H. Evaluation of resistance of standing milkvetch (Astragalus adsurgens) varieties to Embellisia astragali. Lanzhou: Lanzhou University, 2011. |
俞斌华. 沙打旺(Astragalus adsurgens)品种对黄矮根腐病(Embellisia astragali)的抗性评价. 兰州: 兰州大学, 2011. | |
15 | Xu B L, Li M Q, Yu J H, et al. The relation between the contents of chlorophyll in alfalfa varieties and the resistance to powder mildew of alfalfa. Pratacultural Science, 2005, 22(4): 72-74. |
徐秉良, 李敏权, 郁继华, 等. 苜蓿对白粉病的抗性与叶绿素含量的关系. 草业科学, 2005, 22(4): 72-74. | |
16 | Xing H Q, Li M Q, Xu B L, et al. The relationship between the stomata and cultivars of alfalfa and the resistance to Erysiphe polygoni. Grassland and Turf, 2003(3): 42-45. |
邢会琴, 李敏权, 徐秉良, 等. 气孔与苜蓿品种对白粉病抗性的关系. 草原与草坪, 2003(3): 42-45. | |
17 | Qiu J L, Jin Q L, Wang J. Active oxygen and plant defense responses. Plant Physiology Communications, 1998, 34(1): 56-63. |
邱金龙, 金巧玲, 王钧. 活性氧与植物抗病反应. 植物生理学通讯, 1998, 34(1): 56-63. | |
18 | Zhang Y M, Ma H L, Tang Y Z. Structural changes in leaves in Medicago sativa infected with Erysiphe pisi. Acta Prataculturae Sinica, 2017, 26(2): 88-94. |
张咏梅, 马晖玲, 唐云智. 紫花苜蓿叶片受白粉病菌侵染后结构的变化. 草业学报, 2017, 26(2): 88-94. | |
19 | Chen L H, Yang S L, Chung K R. Resistance to oxidative stress via regulating siderophore-mediated iron acquisition by the citrus fungal pathogen Alternaria alternata. Microbiology, 2014, 160(5): 970-979. |
20 | Dong H L, Jing J X. Role of ROS and NO in plant disease resistance responses. Journal of Northwest A & F University, 2003, 31(1): 161-166. |
董海丽, 井金学. 活性氧和一氧化氮在植物抗病反应中的作用. 西北农林科技大学学报, 2003, 31(1): 161-166. | |
21 | Huang B M, Nan Z B, Zhang Z X. Effect of exogenous hydrogen peroxide on resistance of Astragalus adsurgens to yellow stunt and root rot disease. Acta Prataculturae Sinica, 2015, 24(3): 108-114. |
黄贝梅, 南志标, 张志新. 外源H2O2对沙打旺抗黄矮根腐病的影响. 草业学报, 2015, 24(3): 108-114. | |
22 | Djebali N, Jauneau A, Ameline-Torregrosa C, et al. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Molecular Plant-Microbe Interactions, 2009, 22(9): 1043-1055. |
23 | Bi Y M, Kenton P, Mur L, et al. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. The Plant Journal, 1995, 8(2): 235-245. |
24 | Mould M J R, Boland G J, Robb J. Ultrastructure of the Colletotrichum trifolii-Medicago sativa pathosystem. Ⅰ. Pre-penetration events. Physiological & Molecular Plant Pathology, 1991, 38(3): 179-194. |
25 | Samac D A, Penuela S, Schnurr J A, et al. Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Molecular Plant Pathology, 2011, 12(8): 786-798. |
26 | Kemen E, Hahn M, Mendgen K, et al. Different resistance mechanisms of Medicago truncatula ecotypes against the rust fungus Uromyces striatus. Phytopathology, 2005, 95(2): 153-157. |
27 | Rubiales D, Moral A. Prehaustorial resistance against alfalfa rust (Uromyces striatus) in Medicago truncatula. European Journal of Plant Pathology, 2004, 110(3): 239-243. |
28 | Makandar R, Essig J S, Schapaugh M A, et al. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 2006, 19(2): 123-129. |
29 | Durrant W E, Dong X. Systemic acquired resistance. Annual Review of Phytopathology, 2004, 42(1): 185-209. |
30 | Andersen E J, Ali S, Byamukama E, et al. Disease resistance mechanisms in plants. Genes, 2018, 9(7): 339-359. |
31 | Vlot A C, Dempsey M A, Klessig D F. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47(1): 177-206. |
32 | Luo Y Y, Li W, Dai L Y. The progress of the cross-talk among the signaling pathways of phytohormones in plant defense responses. Chinese Agricultural Science Bulletin, 2013, 29(18): 153-157. |
骆琰妍, 李魏, 戴良英. 不同激素信号途径在植物抗病中的相互作用研究进展. 中国农学通报, 2013, 29(18): 153-157. | |
33 | Wei C X, Su H T, Zhang X Y, et al. Effects of exogenous salicylic acid on the resistance of Kentucky bluegrass to brown patch and expression of PR1 and NPR1 resistance genes. Pratacultural Science, 2019, 36(5): 1249-1254. |
尉春雪, 苏浩天, 张晓宇, 等. 外源水杨酸对草地早熟禾抗褐斑病的诱导与抗病基因PR1和NPR1的表达的影响. 草业科学, 2019, 36(5): 1249-1254. | |
34 | Long Y Q, Wang W D, Wang M C, et al. Salicylic acid induced resistance of plants against insects and diseases and its interaction mechanism. Chinese Journal of Tropical Agriculture, 2009, 29(12): 46-50. |
龙亚芹, 王万东, 王美存, 等. 水杨酸(SA)诱导植物对病虫害产生抗性及作用机制研究. 热带农业科学, 2009, 29(12): 46-50. | |
35 | Fang Y Y, Ma H L. Study on disease resistance of creeping bentgrass induced by 2, 3-BD and SA. Grassland and Turf, 2015, 35(3): 83-87. |
房媛媛, 马晖玲. 2, 3-丁二醇与水杨酸诱导匍匐翦股颖对镰刀菌枯萎病的抗性. 草原与草坪, 2015, 35(3): 83-87. | |
36 | Gu Y X, Wang D J. Effect of external salicylic acid on Curvularia lunate boed on Festuca arundinacea Schreb. Grassland of China, 2003, 25(4): 57-61, 72. |
古燕翔, 王代军. 外源诱导物水杨酸对草坪型高羊茅弯孢霉叶斑病抗性影响的研究. 中国草地, 2003, 25(4): 57-61, 72. | |
37 | Robert-Seilaniantz A, Grant M, Jones J D G. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 2011, 49(1): 317-343. |
38 | Xu L B, Liu Z P, Wang H X, et al. The induction effect of jasmonic acid on alfalfa disease resistance. Chinese Journal of Grassland, 2013, 35(5): 57-61. |
徐林波, 刘正坪, 王海霞, 等. 茉莉酸对苜蓿抗病性的诱导作用. 中国草地学报, 2013, 35(5): 57-61. | |
39 | Zhou W N, Guo Z P, Niu J P, et al. Effect of methyl jasmonate on resistance of alfalfa root rot caused by Fusarium oxysporum. Acta Phytopathologica Sinica, 2019, 49(3): 379-390. |
周文楠, 郭志鹏, 牛军鹏, 等. 外源茉莉酸甲酯对紫花苜蓿尖孢镰刀菌根腐病抗病性的作用. 植物病理学报, 2019, 49(3): 379-390. | |
40 | Zhao Z H, Ma X, Dong W K, et al. Study on resistance of Poa pratensis to powdery mildew induced by exogenous methyl jasmonate. Grassland and Turf, 2020, 40(2): 59-66. |
赵泽花, 马祥, 董文科, 等. 外源茉莉酸甲酯诱导草地早熟禾对白粉病抗性的研究. 草原与草坪, 2020, 40(2): 59-66. | |
41 | Anderson J P, Lichtenzveig J, Gleason C, et al. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiology, 2010, 154(2): 861-873. |
42 | Pedras M S, Zaharia I L, Gai Y, et al. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader. Proceedings of the National Academy of Sciences, 2001, 98(2): 747-752. |
43 | Su P S, Ge W Y, Wang H W, et al. Advances in understanding the mechanisms of wheat-Fusarium graminearum interactions. Scientia Sinica (Vitae), 2021, 51(11): 1493-1507. |
苏培森, 葛文扬, 王宏伟, 等. 小麦-禾谷镰孢菌互作机制的研究进展. 中国科学: 生命科学, 2021, 51(11): 1493-1507. | |
44 | Mayama S, Bordin A, Sasabe Y, et al. Selection of somaclonal variants of oats resistant to Helminthosporium victoriae which produces a host specific toxin, victorin. Plant Biotechnology, 2010, 7(2): 64-68. |
45 | Vaziri A, Keen N T, Erwin D C. Correlation of medicarpin production with resistance to Phytophthora megasperma f. sp. medicaginis in alfalfa seedlings. Phytopathology, 1981, 71(12): 1235-1238. |
46 | Saunders J A, O’Neill N R. The characterization of defense responses to fungal infection in alfalfa. BioControl, 2004, 49(6): 715-728. |
47 | Bednarek P, Osbourn A. Plant-microbe interactions: Chemical diversity in plant defense. Science, 2009, 324(5928): 746-748. |
48 | Naseem M, Kunz M, Dandekar T. Plant-pathogen maneuvering over apoplastic sugars. Trends in Plant Science, 2017, 22(9): 740-743. |
49 | Yang J, Sun C, Fu D, et al. Test for L-glutamate inhibition of growth of Alternaria alternata by inducing resistance in tomato fruit. Food Chemistry, 2017, 230: 145-153. |
50 | Suharti W S, Nose A, Zheng S H. Metabolomic study of two rice lines infected by Rhizoctonia solani in negative ion mode by CE/TOF-MS. Journal of Plant Physiology, 2016, 206: 13-24. |
51 | Kumar Y, Dholakia B B, Panigrahi P, et al. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry, 2015, 116: 120-129. |
52 | Niks R E, Qi X Q, Marcel T C. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 2015, 53(1): 445-470. |
53 | Young N D. QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology, 1996, 34(1): 479-501. |
54 | Hammond-Kosack K E, Parker J E. Deciphering plant-pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003, 14(2): 177-193. |
55 | Ma H X, Wang Y G, Gao Y J, et al. Review and prospect on the breeding for the resistance to Fusarium head blight in wheat. Scientia Agricultura Sinica, 2022, 55(5): 837-855. |
马鸿翔, 王永刚, 高玉姣, 等. 小麦抗赤霉病育种回顾与展望. 中国农业科学, 2022, 55(5): 837-855. | |
56 | Torregrosa C, Cluzet S, Fournier J, et al. Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Molecular Plant-Microbe Interactions, 2004, 17(8): 909-920. |
57 | Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46(4): 555-564. |
58 | Dintinger J, Verger D, Caiveau S, et al. Genetic mapping of maize stripe disease resistance from the Mascarene source. Theoretical & Applied Genetics, 2005, 111(2): 347-359. |
59 | Lin F, Kong Z X, Zhu H L, et al. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419× Wangshuibai population. Ⅱ. type Ⅰ resistance. Theoretical & Applied Genetics, 2004, 109(7): 1504-1511. |
60 | Kamphuis L G, Lichtenzveig J, Oliver R P, et al. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biology, 2008, 8(1): 30-41. |
61 | Graham J H, Devine T E, Hanson C H. Occurrence and interaction of three species of Colletotrichum on alfalfa in the mid-Atlantic United States. Phytopathology, 1976, 66: 538-541. |
62 | Zhao Y, Fu H T, Tian W M, et al. Changes in defendant enzyme activity and expression of PAL gene of Stylosanthes after the vaccination with anthracnose. Acta Agrestia Sinica, 2008, 16(6): 585-589. |
赵英, 付海天, 田维敏, 等. 接种后柱花草防御酶活性变化及PAL基因表达分析. 草地学报, 2008, 16(6): 585-589. | |
63 | Elgin J H, Ostazeski S A. Inheritance of resistance to race 1 and race 2 anthracnose in Arc and Saranac AR alfalfa. Crop Science, 1985, 25(5): 861-865. |
64 | Yang S, Gao M, Xu C, et al. Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences, 2008, 105(34): 12164-12169. |
65 | Wang H. Studies on physiology response in Stylosanthes spp. and Colletotrichum gloeosporioides interaction and the function of phenylalanine ammonia-lyase gene SgPAL1. Haikou: Hainan University, 2018. |
王荟. 柱花草与炭疽菌互作的生理响应及苯丙氨酸解氨酶基因SqPAL1的功能研究. 海口: 海南大学, 2018. | |
66 | Gurjar G S, Giri A P, Gupta V S. Gene expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. Ciceri. American Journal of Plant Sciences, 2012, 3(2): 190-201. |
67 | Pilet-Nayel M L, Prospéri J M, Hamon C, et al. AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathology, 2009, 99(2): 203-208. |
68 | Marks G C. Factors involved with the reaction of alfalfa to root rot caused by Phytophthora megasperma. Phytopathology, 1971, 61(5): 510. |
69 | Van S C C N, Takken F L W. Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology, 2014, 52(1): 551-581. |
70 | Lu N S J, Barnes D K, Frosheiser F I. Inheritance of Phytophthora root rot resistance in alfalfa. Crop Science, 1973, 13(6): 714-717. |
71 | Irwin J A G, Maxwell D P, Bingham E T. Inheritance of resistance to Phytophthora megasperma in diploid alfalfa. Crop Science, 1981, 21(2): 271-276. |
72 | Irwin J A G, Maxwell D P, Bingham E T. Inheritance of resistance to Phytophthora megasperma in tetraploid alfalfa. Crop Science, 1981, 21(2): 277-283. |
73 | Havey M J, Maxwell D P, Irwin J A G. Independent inheritance of genes conditioning resistance to Phytophthora root rot from diploid and tetraploid alfalfa. Crop Science, 1987, 27(5): 873-879. |
74 | Pedersen M W, Barnes D K. Inheritance of downy mildew resistance in alfalfa. Crop Science, 1965, 5(1): 4-5. |
75 | Skinner D Z, Stuteville D L. Genetics of host-parasite interactions between alfalfa and Peronospora trifoliorum. Phytopathology, 1985, 75: 119-121. |
76 | Okon S M. Effectiveness of resistance genes to powdery mildew in oat. Crop Protection, 2015, 74: 48-50. |
77 | Mohler V, Zeller F J, Hsam S. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo). Journal of Applied Genetics, 2012, 53(2): 145-148. |
78 | Yu J, Herrmann M. Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theoretical and Applied Genetics, 2006, 113(3): 429-437. |
79 | Okon S, Kowalczyk K. Identification of SCAR markers linked to resistance to powdery mildew in common oat (Avena sativa). Journal of Plant Diseases and Protection, 2012, 119(5/6): 179-181. |
80 | Leonard K J, Huerta-Espino J, Salmeron J J. Virulence of oat crown rust in Mexico. Plant Disease, 2005, 89(9): 941-948. |
81 | Chong J, Zegeye T. Physiologic specialization of Puccinia coronata f. sp. avenae, the cause of oat crown rust, in Canada from 1999 to 2001. Canadian Journal of Plant Pathology, 2004, 26(1): 97-108. |
82 | Gan L, Su H T, Ling X W, et al. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant. Journal of Beijing Forestry University, 2017, 39(3): 87-92. |
甘露, 苏浩天, 凌欣闻, 等. 草地早熟禾及其矮化突变材料锈病病原菌鉴定及抗病机制初探. 北京林业大学学报, 2017, 39(3): 87-92. | |
83 | Leonard K J, Martinelli J A. Virulence of oat crown rust in Brazil and Uruguay. Plant Disease, 2005, 89: 802-808. |
84 | Admassu-Yimer B, Bonman J M, Esvelt K K, et al. Mapping of crown rust resistance gene Pc53 in oat (Avena sativa). PLoS One, 2018, 13(12): e0209105. |
85 | Admassu-Yimer B, Klos K E, Griffiths I, et al. Mapping of crown rust (Puccinia coronata f. sp. avenae) resistance gene Pc54 and a novel quantitative trait locus effective against powdery mildew (Blumeria graminis f. sp. avenae) in the oat (Avena sativa) line Pc54. Phytopathology, 2022, 112(6): 1316-1322. |
86 | Newton M, Johnson T. Physiologic specialisation of oat stem rust in Canada. I. Canadian Journal of Research, 1944, 22(5): 201-216. |
87 | Martens J W. System of nomenclature for races of Puccinia graminis f. sp. avenae. Phytopathology, 1979, 69(3): 293-294. |
88 | Fetch J T G. Effect of temperature on the expression of seedling resistance to Puccinia graminis f. sp. avenae in oat. Canadian Journal of Plant Pathology, 2006, 28: 558-565. |
89 | Li L K, He X S, Zeng H M, et al. Expression and response analysis of NCED gene of Zoysia japonica in initial infection stage of Rhizoctonia solani. Plant Diseases and Pests, 2017, 8(5): 23-26. |
90 | Hijano E H, Barnes D K, Frosheiser F I. Inheritance of resistance to Fusarium wilt in alfalfa. Crop Science, 1983, 23: 31-34. |
91 | Havey M J, Maxwell D P. Inheritance of Phytophthora root rot resistance in two diploid alfalfa species. Crop Science, 1987, 27: 225-228. |
92 | Hsam S, Mohler V, Zeller F J. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): Current status of major genes. Journal of Applied Genetics, 2014, 55(2): 155-162. |
93 | Wilson W A, Mcmullen M S. Dosage dependent genetic suppression of oat crown rust resistance gene Pc-62. Crop Science, 1997, 37(6): 1699-1705. |
94 | Pu X J, Tian J S, Tian X H, et al. Identification of QTLs for resistance to powdery mildew (Erysiphe) in red clover (Trifolium pratense). European Journal of Plant Pathology, 2020, 156(3): 799-809. |
95 | Yu L X, Zhang F, Culma C M, et al. Construction of high-density linkage maps and identification of quantitative trait loci associated with Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Plant Disease, 2020, 104(5): 1439-1444. |
96 | Negahi A, Ben C, Gentzbittel L, et al. Quantitative trait loci associated with resistance to a potato isolate of Verticillium albo-atrum in Medicago truncatula. Plant Pathology, 2014, 63(2): 308-315. |
97 | Toueni M, Ben C, Ru A L, et al. Quantitative resistance to Verticillium wilt in Medicago truncatula involves eradication of the fungus from roots and is associated with transcriptional responses related to innate immunity. Frontiers in Plant Science, 2016, 7: 1431. |
98 | Ben C, Toueni M, Montanari S, et al. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. Journal of Experimental Botany, 2013, 64(1): 317-332. |
99 | Zhu S, Leonard K J, Kaeppler H F. Quantitative trait loci associated with seedling resistance to isolates of Puccinia coronata in oat. Phytopathology, 2003, 93(7): 860-866. |
100 | Muylle H, Baert J, Bockstaele E V, et al. Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity, 2005, 95(5): 348-357. |
101 | Ma S J, Xu B Y, Zeng F H, et al. Studies on genetic transformation with resistance to fungi disease of tall fescue. Acta Horticulturae Sinica, 2006, 33(6): 1275-1280. |
马生健, 徐碧玉, 曾富华, 等. 高羊茅抗真菌病基因转化的研究. 园艺学报, 2006, 33(6): 1275-1280. |
[1] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[2] | 聂秀美, 赵桂琴, 孙浩洋, 柴继宽, 兰晓君, 周恒, 黎蓉, 琚泽亮, 焦润安, 孙雷雷. 甘肃省燕麦主产区叶斑病调查及病原鉴定[J]. 草业学报, 2020, 29(4): 157-167. |
[3] | 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019, 28(8): 139-149. |
[4] | 谢奎忠, 胡新元, 张彤彤, 邱慧珍. 不同杀菌剂对旱地连作马铃薯土壤水分效应、微生物和产量的影响[J]. 草业学报, 2019, 28(7): 103-111. |
[5] | 李晶,李娜,丁品,杨海兴,刘锦霞,武建荣,杜文静,张建军. 黄帚橐吾提取物对保护地辣椒4种病原真菌的抑制活性及其病害防效[J]. 草业学报, 2018, 27(4): 56-68. |
[6] | 李春杰, 陈泰祥, 赵桂琴, 南志标. 燕麦病害研究进展[J]. 草业学报, 2017, 26(12): 203-222. |
[7] | 李彦忠, 徐娜, 汪治刚, 史敏. 沙打旺黄矮根腐病的研究进展[J]. 草业学报, 2017, 26(11): 196-204. |
[8] | 徐杉, 李彦忠. 箭筈豌豆真菌病害研究进[J]. 草业学报, 2016, 25(7): 203-214. |
[9] | 王瑜, 袁庆华, 苗丽宏, 张丽, 潘龙其. 东北与华北地区紫花苜蓿病害调查与主要病害流行规律研究[J]. 草业学报, 2016, 25(3): 52-59. |
[10] | 孙广正,姚拓,赵桂琴,卢虎,马文彬. 荧光假单胞菌防治植物病害研究现状与展望[J]. 草业学报, 2015, 24(4): 174-190. |
[11] | 李兴龙,李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3): 204-212. |
[12] | 张振粉,南志标. 苜蓿细菌性病害研究进展[J]. 草业学报, 2014, 23(4): 330-342. |
[13] | 聂红霞,高峰,段廷玉,李彦忠. 红豆草病害研究进展[J]. 草业学报, 2014, 23(3): 302-312. |
[14] | 方永丰,李永生,彭云玲,王芳,王威,穆延召,王汉宁. 农杆菌介导Chi-linker-Glu融合基因和bar基因转化玉米茎尖的研究[J]. 草业学报, 2012, 21(5): 69-76. |
[15] | 李彦忠,南志标,张志新,刘永儒,高兴业,郑健勋. 沙打旺黄矮根腐病在我国北方5省区的分布与危害[J]. 草业学报, 2011, 20(2): 39-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||