草业学报 ›› 2023, Vol. 32 ›› Issue (12): 14-23.DOI: 10.11686/cyxb2023041
郭美琪1(), 刘琳1, 荆晶莹1,2, 杨高文1,2, 张英俊1,2()
收稿日期:
2023-02-11
修回日期:
2023-03-09
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
张英俊
作者简介:
Corresponding author. E-mail: zhangyj@cau.edu.cn基金资助:
Mei-qi GUO1(), Lin LIU1, Jing-ying JING1,2, Gao-wen YANG1,2, Ying-jun ZHANG1,2()
Received:
2023-02-11
Revised:
2023-03-09
Online:
2023-12-20
Published:
2023-10-18
Contact:
Ying-jun ZHANG
摘要:
草地退化导致适口性好的优良牧草比例减少或缺失,补播优良牧草是快速修复退化草地的有效途径。补播种的选择是影响补播成功与否的首要因素。本研究以内蒙古典型草原不同退化程度的草地为研究对象,提出一种退化草地免耕补播修复物种选择方法,方法如下:选择退化草地优势种对土壤进行驯化,与拟补播物种进行植物土壤反馈(PSF)试验;同时将该退化草地斑块土壤取回进行补播物种生长试验,测定各补播物种的生物量(Tb)和对土壤因子的响应。根据PSF和Tb进行补播物种筛选,优先选择对补播物种存在正反馈或中性反馈且Tb在不同草地植物斑块中差异不显著的物种。结果表明:以羊草为优势种的轻度退化草地适宜补播黄花苜蓿和无芒雀麦;以针茅为优势种的轻中度退化草地适宜补播羊草;以冷蒿为优势种的中度退化草地适宜补播胡枝子;以星毛委陵菜为优势种的重度退化草地可选择冰草这类对土壤属性变化不敏感的牧草。本研究首次建立了普适性的退化草地补播物种选择方法,为国内外退化草原免耕补播修复技术提供了理论支持。
郭美琪, 刘琳, 荆晶莹, 杨高文, 张英俊. 基于植物-土壤反馈原理的退化草原免耕补播修复物种选择研究[J]. 草业学报, 2023, 32(12): 14-23.
Mei-qi GUO, Lin LIU, Jing-ying JING, Gao-wen YANG, Ying-jun ZHANG. Species selection for no-tillage reseeding in grassland restoration based on plant-soil feedback[J]. Acta Prataculturae Sinica, 2023, 32(12): 14-23.
项目 Item | 全氮 Total N (mg·g-1) | 全碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 0.60±0.018a | 8.72±0.159a | 2.50±0.156a | 0.30±0.059a | 0.67±0.146a | 7.86±0.197a | 8.12±0.016a |
针茅S. capillata | 0.60±0.025a | 8.45±0.496a | 2.18±0.161a | 0.41±0.045a | 0.76±0.190a | 8.17±0.248a | 8.10±0.017a |
冷蒿A. frigida | 0.60±0.023a | 8.58±0.554a | 2.07±0.208a | 0.45±0.033a | 0.42±0.077a | 8.14±0.669a | 8.09±0.005a |
表1 不同植物驯化土壤理化性质
Table 1 Soil physicochemical properties in different plant domestication
项目 Item | 全氮 Total N (mg·g-1) | 全碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 0.60±0.018a | 8.72±0.159a | 2.50±0.156a | 0.30±0.059a | 0.67±0.146a | 7.86±0.197a | 8.12±0.016a |
针茅S. capillata | 0.60±0.025a | 8.45±0.496a | 2.18±0.161a | 0.41±0.045a | 0.76±0.190a | 8.17±0.248a | 8.10±0.017a |
冷蒿A. frigida | 0.60±0.023a | 8.58±0.554a | 2.07±0.208a | 0.45±0.033a | 0.42±0.077a | 8.14±0.669a | 8.09±0.005a |
微生物 Microorganism | 驯化土壤 Domesticated soil | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌Bacteria | 羊草L. chinensis | 6.76±0.0554ab | 4712.1±177.0ab |
针茅S. capillata | 6.84±0.0343a | 4936.6±108.1a | |
冷蒿A. frigida | 6.75±0.0230b | 4611.5±73.5b | |
真菌Fungi | 羊草L. chinensis | 4.19±0.3196a | 731.7±58.9a |
针茅S. capillata | 2.48±0.5452b | 658.7±59.8a | |
冷蒿A. frigida | 4.02±0.2531a | 686.7±46.2a |
表2 不同植物驯化土壤细菌和真菌α多样性
Table 2 α-diversity of soil microbial in different plant domestication
微生物 Microorganism | 驯化土壤 Domesticated soil | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌Bacteria | 羊草L. chinensis | 6.76±0.0554ab | 4712.1±177.0ab |
针茅S. capillata | 6.84±0.0343a | 4936.6±108.1a | |
冷蒿A. frigida | 6.75±0.0230b | 4611.5±73.5b | |
真菌Fungi | 羊草L. chinensis | 4.19±0.3196a | 731.7±58.9a |
针茅S. capillata | 2.48±0.5452b | 658.7±59.8a | |
冷蒿A. frigida | 4.02±0.2531a | 686.7±46.2a |
图1 不同驯化土壤细菌和真菌β多样性的NMDS分析Lc: 羊草L. chinensis; Sc: 针茅S. capillata; Af: 冷蒿A. frigida; P: Adonis检验显著性The significance of Adonis test; 下同The same below.
Fig.1 NMDS analysis of bacteria and fungi β-diversity in different domesticated soils
图2 植物-土壤反馈指数Lb: 胡枝子L. bicolor; Ms: 紫花苜蓿M. sativa; Mf: 黄花苜蓿M. falcata; Ac: 冰草A. cristatum; Bi: 无芒雀麦B. inermis; 下同The same below. *: P<0.05; **: P<0.01; 数据为平均值±标准误Data are shown as mean±standard error (n=4).
Fig.2 Plant-soil feedback index
斑块 Patch | 总氮 Total N (mg·g-1) | 总碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 1.62±0.041c | 23.53±0.945c | 5.01±0.485b | 11.14±0.173a | 7.66±0.411a | 23.01±0.990a | 7.76±0.006c |
冷蒿A. frigida | 1.87±0.030b | 26.61±0.853b | 3.48±0.055c | 7.69±0.293b | 4.35±0.469b | 17.31±0.397c | 7.95±0.014b |
星毛委陵菜P. acaulis | 2.31±0.048a | 31.34±1.044a | 6.35±0.345a | 5.33±0.453c | 3.12±0.121c | 19.63±0.297b | 8.04±0.008a |
表3 长期驯化形成的斑块草地土壤非生物特性
Table 3 Soil abiotic characteristics of grassland in different patches
斑块 Patch | 总氮 Total N (mg·g-1) | 总碳 Total C (mg·g-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 有机碳 Soil organic carbon (mg·g-1) | pH |
---|---|---|---|---|---|---|---|
羊草L. chinensis | 1.62±0.041c | 23.53±0.945c | 5.01±0.485b | 11.14±0.173a | 7.66±0.411a | 23.01±0.990a | 7.76±0.006c |
冷蒿A. frigida | 1.87±0.030b | 26.61±0.853b | 3.48±0.055c | 7.69±0.293b | 4.35±0.469b | 17.31±0.397c | 7.95±0.014b |
星毛委陵菜P. acaulis | 2.31±0.048a | 31.34±1.044a | 6.35±0.345a | 5.33±0.453c | 3.12±0.121c | 19.63±0.297b | 8.04±0.008a |
微生物 Microorganism | 斑块种类 Types of patch | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌 Bacteria | 羊草L. chinensis | 5.35±0.038a | 1089.50±46.200a |
冷蒿A. frigida | 5.17±0.015b | 989.28±148.450a | |
星毛委陵菜P. acaulis | 5.30±0.062a | 1105.40±60.660a | |
真菌 Fungi | 羊草L. chinensis | 3.44±0.154a | 710.65±70.398a |
冷蒿A. frigida | 3.33±0.217a | 618.04±61.608a | |
星毛委陵菜P. acaulis | 2.84±0.299b | 629.44±79.628a |
表4 长期驯化形成的斑块土壤微生物α多样性
Table 4 α-diversity of soil microbial in different patches
微生物 Microorganism | 斑块种类 Types of patch | Shannon指数 Shannon index | Chao1指数 Chao1 index |
---|---|---|---|
细菌 Bacteria | 羊草L. chinensis | 5.35±0.038a | 1089.50±46.200a |
冷蒿A. frigida | 5.17±0.015b | 989.28±148.450a | |
星毛委陵菜P. acaulis | 5.30±0.062a | 1105.40±60.660a | |
真菌 Fungi | 羊草L. chinensis | 3.44±0.154a | 710.65±70.398a |
冷蒿A. frigida | 3.33±0.217a | 618.04±61.608a | |
星毛委陵菜P. acaulis | 2.84±0.299b | 629.44±79.628a |
图3 不同斑块土壤细菌和真菌群落β多样性的NMDS分析Pa: 星毛委陵菜P. acaulis;下同The same below.
Fig.3 NMDS analysis of bacteria and fungi communities β-diversity in different patches
图4 不同斑块土壤补播总物种生物量同组不同小写字母表示在0.05水平存在显著差异,ns表示差异不显著。Different lowercase letters in the same group indicate significant differences at the 0.05 level, ns indicate no significant difference.
Fig.4 Reseeding species biomass in different patches
图5 各土壤因子对补播物种生物量的相对贡献度Fungi: 真菌Shannon指数Shannon index of fungi; Bacteria: 细菌Shannon指数Shannon index of bacteria; *: P<0.05; **: P<0.01; ***: P<0.001.
Fig.5 The relative contribution values (R2) of soil factors to the biomass of reseeding species
项目 Item | 胡枝子 L. bicolor | 紫花苜蓿 M. sativa | 黄花苜蓿 M. falcata | 羊草 L.chinensis | 冰草 A. cristatum | 无芒雀麦 B. inermis |
---|---|---|---|---|---|---|
羊草L.chinensis | →√ | →√ | ↓√ | →√ | →√ | ↓√ |
针茅S. capillata | ↑ | → | → | ↓ | ↑ | → |
冷蒿A. frigida | ↑√ | →× | →× | ↓× | ↑√ | →× |
星毛委陵菜P. acaulis | × | × | × | × | √ | × |
表5 退化草地补播物种筛选方法
Table 5 Methods of reseeding species selection in degraded grasslands
项目 Item | 胡枝子 L. bicolor | 紫花苜蓿 M. sativa | 黄花苜蓿 M. falcata | 羊草 L.chinensis | 冰草 A. cristatum | 无芒雀麦 B. inermis |
---|---|---|---|---|---|---|
羊草L.chinensis | →√ | →√ | ↓√ | →√ | →√ | ↓√ |
针茅S. capillata | ↑ | → | → | ↓ | ↑ | → |
冷蒿A. frigida | ↑√ | →× | →× | ↓× | ↑√ | →× |
星毛委陵菜P. acaulis | × | × | × | × | √ | × |
1 | Zhou J, Wilson G W T, Cobb A B, et al. Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation & Development, 2019, 30(6): 647-657. |
2 | Zhang Y J, Zhou J Q, Yang G W, et al. Theory and application of no-tillage reseeding in degraded grasslands. Chinese Science Bulletin, 2020, 65(16): 1546-1555. |
张英俊, 周冀琼, 杨高文, 等. 退化草原植被免耕补播修复理论与实践. 科学通报, 2020, 65(16): 1546-1555. | |
3 | Castelli F, Ceotto E, Borrelli L, et al. No-till permanent meadow promotes soil carbon sequestration and nitrogen use efficiency at the expense of productivity. Agronomy for Sustainable Development, 2017, 37(6): https://doi.org/10.1007/s13593-017-0462-6. |
4 | Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 2013, 22(2): 290-299. |
张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策. 草业学报, 2013, 22(2): 290-299. | |
5 | Reinsch T, Loges R, Kluss C, et al. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agriculture Ecosystems & Environment, 2018, 265: 374-383. |
6 | He J S, Pu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grassland: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. | |
7 | Rantala-Sykes B, Campbell D. Should I pick that? A scoring tool to prioritize and valuate native wild seed for restoration. Restoration Ecology, 2019, 27(1): 9-14. |
8 | Jimenez-Alfaro B, Frischie S, Stolz J, et al. Native plants for greening Mediterranean agroecosystems. Nature Plants, 2020, 6(3): 209-214. |
9 | Castle S C, Lekberg Y, Affleck D, et al. Soil abiotic and biotic controls on plant performance during primary succession in a glacial landscape. Journal of Ecology, 2016, 104(6): 1555-1565. |
10 | Png G K, Lambers H, Kardol P, et al. Biotic and abiotic plant-soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. Journal of Ecology, 2019, 107(1): 142-153. |
11 | Jiang Y, Bi X L, Huang J H, et al. Patterns and drivers of vegetation degradation in Xilin River Basin, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1132-1141. |
姜晔, 毕晓丽, 黄建辉, 等. 内蒙古锡林河流域植被退化的格局及驱动力分析. 植物生态学报, 2010, 34(10): 1132-1141. | |
12 | Zhang W G, Huang W B, Yang Z Y. The study on the relationship between mini-patch and degradation of pasture. Acta Prataculturae Sinica, 2003, 12(3): 44-50. |
张卫国, 黄文冰, 杨振宇. 草地微斑块与草地退化关系的研究. 草业学报, 2003,12(3): 44-50. | |
13 | Zhao X, Song Y Q, Xu T T, et al. Edge effects and spatial degradation process in highly fragmented grassland-impact on soil microbial community. Ecological Indicators, 2021, 132: 108307. |
14 | Yan Y, Tian L L, Du Z Y, et al. Carbon, nitrogen and phosphorus stocks differ among vegetation patch types in a degraded alpine steppe. Journal of Soils and Sediments, 2019, 19(4): 1809-1819. |
15 | Che R, Wang Y, Li K, et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 2019, 195: 104426. |
16 | Ma B, Dai Z, Wang H, et al. Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in eastern China. Msystems, 2017, 2(1): e00174-16. |
17 | Gan H J, Emmett B D, Drinkwater L E. Soil management legacy alters weed-crop competition through biotic and abiotic pathways. Plant and Soil, 2021, 462(1/2): 543-560. |
18 | Gundale M J, Kardol P. Multi-dimensionality as a path forward in plant-soil feedback research. Journal of Ecology, 2021, 109(10): 3446-3465. |
19 | Bennett J A, Klironomos J. Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers. New Phytologist, 2019, 222(1): 91-96. |
20 | Harrison K A, Bardgett R D. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 2010, 98(2): 384-395. |
21 | Pei G T, Sun J F, He T X, et al. Effects of long-term human disturbances on soil microbial diversity and community structure in a Karst grassland ecosystem of northwestern Guangxi, China. Chinese Journal of Plant Ecology, 2021, 45(1): 74-84. |
裴广廷, 孙建飞, 贺同鑫, 等. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响. 植物生态学报, 2021, 45(1): 74-84. | |
22 | Wang Q, Zheng J H, Zhao M L, et al. Effects of mowing intensity on community characteristics and soil physicochemical properties of Stipa grandis steppe, Inner Mongolia, China. Acta Prataculturae Sinica, 2023, 32(2): 26-34. |
王琪, 郑佳华, 赵萌莉, 等.刈割强度对大针茅草原植物群落特征和土壤理化性质的影响.草业学报, 2023, 32(2): 26-34. | |
23 | Olsen S R, Cole C V, Watanabe F S. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington DC: United States Department of Agriculture, 1954. |
24 | Baxendale C, Orwin K H, Poly F, et al. Are plant-soil feedback responses explained by plant traits? New Phytologist, 2014, 204(2): 408-423. |
25 | Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 2016, 222: 213-222. |
26 | Fujji K, Shibata M, Kitajima K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecological Research, 2018, 33(1): 149-160. |
27 | Su J S. Mechanism of plant-soil feedback in Stipa community’s succession in typical grassland after grazing exclusion on the Loess Plateau. Xianyang: Northwest A & F University, 2017. |
苏纪帅. 黄土高原典型草原针茅群落封育演替进程中的植物-土壤反馈机制研究. 咸阳: 西北农林科技大学, 2017. | |
28 | Qu Y B, Ren H Q, Gao S B, et al. Plant-soil feedback effects of four common species in the Inner Mongolia Steppe, China. Chinese Journal of Ecology, 2018, 37(2): 353-359. |
曲耀冰, 任慧琴, 高韶勃, 等. 内蒙古典型草原区四种主要物种的植物-土壤反馈作用. 生态学杂志, 2018, 37(2): 353-359. | |
29 | Nuske S J, Fajardo A, Nunez M A, et al. Soil biotic and abiotic effects on seedling growth exhibit context-dependent interactions: Evidence from a multi-country experiment on Pinus contorta invasion. New Phytologist, 2021, 232(1): 303-317. |
30 | Liu M, Zhang Z C, Sun J, et al. The response of vegetation biomass to soil properties along degradation gradients of alpine meadow at Zoige Plateau. Chinese Geographical Science, 2020, 30(3): 446-455. |
31 | Jiang L L, Han X G, Zhang G M, et al. The role of plant-soil feedbacks and land-use legacies in restoration of a temperate steppe in northern China. Ecological Research, 2010, 25(6): 1101-1111. |
32 | Cheeke T E, Schneider M, Saify A, et al. Role of soil biota in grassland restorations in high nutrient soils. Restoration Ecology, 2021, 30(4): e13549. |
33 | Qu G H, Guo J X. The relationship between plant communities and soil characteristics in Songnen Plain. Acta Prataculturae Sinica, 2003, 12(1): 18-22. |
曲国辉, 郭继勋. 松嫩平原不同演替阶段植物群落和土壤特性的关系. 草业学报, 2003, 12(1): 18-22. | |
34 | Zhan T Y, Hou G, Liu M, et al. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021. |
詹天宇, 侯阁, 刘苗, 等. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021. | |
35 | Yu Y, Zheng L, Zhou Y, et al. Changes in soil microbial community structure and function following degradation in a temperate grassland. Journal of Plant Ecology, 2020, 14(3): 384-397. |
36 | Luo Z M, Liu J X, Hu Y Q, et al. Taxonomic and functional diversity of soil microbial communities in subalpine meadow with different degradation degrees in mount Wutai. Environmental Science, 2023, 44(5): 2918-2927. |
罗正明, 刘晋仙, 胡砚秋, 等. 五台山不同退化程度亚高山草甸土壤微生物群落分类与功能多样性特征. 环境科学, 2023, 44(5): 2918-2927. | |
37 | Zhang X, Johnston E R, Barberan A, et al. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Global Change Biology, 2017, 23(10): 4318-4332. |
38 | Paredes S H, Lebeis S L, Bailey J K. Giving back to the community: Microbial mechanisms of plant-soil interactions. Functional Ecology, 2016, 30(7): 1043-1052. |
[1] | 马源, 王晓丽, 王彦龙, 马玉寿, 崔海鹏. 生态恢复领域草种丸粒化研究进展[J]. 草业学报, 2023, 32(4): 197-207. |
[2] | 赵京东, 乌云娜, 宋彦涛. 短期围封对辽西北退化草地群落牧草品质的影响[J]. 草业学报, 2021, 30(9): 51-61. |
[3] | 赵京东, 宋彦涛, 徐鑫磊, 乌云娜. 施氮和刈割对辽西北退化草地牧草产量和品质的影响[J]. 草业学报, 2021, 30(8): 36-48. |
[4] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[5] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[6] | 王丽娜, 罗久富, 杨梅香, 张利, 刘学敏, 邓东周, 周金星. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7): 38-48. |
[7] | 安婵, 乔建霞, 商建英, 李金升, 赵天赐, 唐士明, 邵新庆, 黄顶, 王堃, 刘克思. 人造湖对毗邻退化草地土壤含水量、电导率和pH的影响[J]. 草业学报, 2018, 27(8): 21-29. |
[8] | 王玉琴, 鲍根生, 宋梅玲, 尹亚丽, 刘生财, 杨有武, 杨铭, 王宏生. 两种措施下施氮肥对狼毒型退化草地群落及营养品质的影响[J]. 草业学报, 2018, 27(12): 177-186. |
[9] | 萨茹拉,侯向阳,李金祥,丁勇,吴新宏,运向军. 不同放牧退化程度典型草原植被—土壤系统的有机碳储量[J]. 草业学报, 2013, 22(5): 18-26. |
[10] | 邓斌,任国华,刘志云,尚占环,裴世芳. 封育三年对三种高寒草地群落土壤种子库的影响[J]. 草业学报, 2012, 21(5): 23-31. |
[11] | 李天才,曹广民,柳青海,周国英,师生波,张德罡. 青海湖北岸退化与封育草地土壤与优势植物中四种微量元素特征[J]. 草业学报, 2012, 21(5): 213-221. |
[12] | 李婧梅,蔡海,程茜,乔春连,褚晖,陈懂懂,. 青海省三江源地区退化草地蒸散特征[J]. 草业学报, 2012, 21(3): 223-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||