欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2024, Vol. 33 ›› Issue (1): 198-206.DOI: 10.11686/cyxb2023089

• 综合评述 • 上一篇    

植物端粒DNA结合蛋白及端粒酶活性调控研究

孙守江(), 马馼, 毛培胜(), 豆丽茹, 贾志程, 孙铭, 王娟   

  1. 中国农业大学草业科学与技术学院,北京 100193
  • 收稿日期:2023-03-22 修回日期:2023-05-29 出版日期:2024-01-20 发布日期:2023-11-23
  • 通讯作者: 毛培胜
  • 作者简介:E-mail: maops@cau.edu.cn
    孙守江(1990-),男,甘肃景泰人,在读博士。E-mail: 931620185@qq.com
  • 基金资助:
    国家自然科学基金面上项目(31971754)

Regulation of telomere DNA binding protein and telomerase activity in plants

Shou-jiang SUN(), Wen MA, Pei-sheng MAO(), Li-ru DOU, Zhi-cheng JIA, Ming SUN, Juan WANG   

  1. College of Grassland Science and Technology,China Agricultural University,Beijing 100193,China
  • Received:2023-03-22 Revised:2023-05-29 Online:2024-01-20 Published:2023-11-23
  • Contact: Pei-sheng MAO

摘要:

植物衰老和种子劣变机理的研究一直是农业科学领域关注的热点。植物衰老会对农业产生巨大的负面影响,牧草提前衰老也会导致草地生产力下降,限制草产业的发展。由于种子劣变,全球每年约有25%的种子失去活力,导致巨额的经济损失,严重影响农业的健康发展。深入揭示植物衰老特性和调控机制,不仅对于阐明植物生态适应性及种群稳定性具有重要价值,而且对于延缓衰老技术和调控措施的选择具有重要实践意义。在模式植物拟南芥研究中发现,染色体端粒与植物衰老以及种子活力密切相关。端粒是染色体末端的重复DNA序列,由端粒DNA和结合蛋白组成。端粒结合蛋白是一组与端粒DNA结合的蛋白质,主要是帮助稳定端粒结构并保护端粒免受DNA修复系统的干扰,其次还参与了基因表达、DNA复制和染色体结构调节等许多生物学过程。端粒酶由端粒酶逆转录酶(TERT)和端粒酶RNA(TER)两个亚单位组成,端粒酶逆转录酶亚基参与线粒体功能以及相关基因表达调控,通过对端粒酶新功能的探索,有助于提高植物的抗逆性,从而延缓植物的衰老进程,为提高作物产量提供一条新的途径。近年来在植物中研究发现,端粒的动态变化与植物衰老存在相关性,植物端粒内稳态的维持机制仍存在许多问题,端粒长度以及端粒酶活性的动态变化与植物衰老以及种子老化的关系尚不清楚。基于此,本研究综述了端粒和端粒结合蛋白在植物生物学中的作用,重点论述了端粒和端粒结合蛋白调控端粒长度以及端粒酶活性的模式,为后续解析植物衰老以及种子劣变机理提供理论参考依据。

关键词: 端粒, 端粒酶, 端粒结合蛋白, 植物衰老

Abstract:

The investigation of plant senescence and seed deterioration mechanisms has emerged as a prominent and highly significant subject in the field of agricultural science. Plant senescence can exert a profound negative impact on agriculture, while premature senescence of forage grasses can engender diminished grassland productivity and impede the progress of the grass industry. Additionally, seed deterioration leads to an annual loss of viability in approximately 25% of global seeds, resulting in substantial economic losses and significantly hampering the healthy advancement of agriculture. Gaining a comprehensive and profound understanding of plant senescence characteristics and regulatory mechanisms offers immense value not only in unraveling plant ecological adaptations and population stability but also in offering vital practical implications for the selection of senescence retardation techniques and regulatory measures. In the model plant Arabidopsis thaliana, extensive evidence indicates a close and intricate interrelation among chromosomal telomeres, plant senescence, and seed viability. Telomeres, repetitive DNA sequences situated at the chromosomal termini, encompass telomeric DNA and associated binding proteins. Telomere-binding proteins form a pivotal protein ensemble that primarily assumes the role of stabilizing telomere structure and safeguarding telomeres against disturbances originating from the DNA repair system. Moreover, these proteins actively partake in numerous fundamental biological processes, including gene expression, DNA replication, and the modulation of chromosomal architecture. Telomerase, comprising two subunits-telomerase reverse transcriptase (TERT) and telomerase RNA (TER)-exerts its influence on mitochondrial function and the regulation of pertinent gene expression. By exploring the nascent functionalities of telomerase, we can facilitate advances in plant stress resistance, subsequently postponing the onset of plant senescence and creating novel pathways towards enhanced crop yield. Recent investigations conducted on plants have unveiled a compelling correlation between telomere dynamics and plant senescence, yet numerous question remain surrounding the precise mechanisms governing telomere homeostasis in plants. In the light of these findings, this study undertakes a comprehensive review of the roles fulfilled by telomeres and telomere-binding proteins in plant biology, with particular emphasis on the regulatory mechanisms governing telomere length and telomerase activity orchestrated by these pivotal elements. This work serves as a theoretical cornerstone, furnishing a vital reference for subsequent exploration of the intricacies of plant senescence and seed deterioration mechanisms.

Key words: telomere, telomerase, telomeric binding protein, plant senescence