[1] Govindjee. Sixty-three years since kautsky: Chlorophyll a fluorescence[J]. Australia Journal of Plant Physiology, 1995, 22:131-160. [2] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448. [3] Crofts A R, Yerkes C T. A molecular mechanism for qE-quenching[J]. Federation of European Biochemical Societies, 1994, 352: 265-270. [4] Dau H. Molecular mechanisms and quantitative models of variable photosystem II fluorescence[J]. Photochemistry and Photobiology, 1994, 60: 1-23. [5] Kooten O V, Jan F H. The use of chlorophyll fluorescence nomenclature in plant stress[J]. Physiology Photosynthesis Research, 1990, 25: 147-150. [6] Maldonado R R, Pavlov S, Gonzalez A, et al. Can machines recognize stress in plants[J]. Environmental Chemistry Letters, 2003, 1: 201-205. [7] 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18(1): 51-55. [8] 周蕴薇, 刘艳萍, 戴思兰. 用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J]. 植物生理学通讯, 2006, 42(5): 945-950. [9] Pintoa F L, Oliveira J G, Cunha M D, et al. Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress[J]. Environmental and Experimental Botany, 2008, 64: 307-313. [10] Keranen M, Aro E M, Tyystjarvi E, et al. Automatic plant identification with chlorophyll fluorescence fingerprinting[J]. Precision Agriculture, 2003, 4: 53-67. [11] Moya I, Camenen L, Evain S, et al. A new instrument for passive remote sensing: 1. Measurements of sunlight-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2004, 91: 186-197. [12] Meroni M, Colombo R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer[J]. Remote Sensing of Environment, 2006, 103: 438-448. [13] Zarco P, Miller J, Mohammed G, et al. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation[J]. Remote Sensing of Environment, 2000, 74: 582-595. [14] 马今芳. 拟南芥高叶绿素荧光突变体筛选及PPT1基因功能研究[D]. 兰州: 兰州大学, 2006. 4-9. [15] Pesaresia P, Varottoa C, Richlyb E, et al. Functional genomics of Arabidopsis photosynthesis[J]. Plant Physiology and Biochemistry, 2001, 39: 285-294. [16] 张峰, 王玉萍, 黄惠英. T-DNA插入对拟南芥突变体色素和内囊体膜色素蛋白复合物的影响[J]. 草业学报, 2008, 17(5): 145-150. [17] Oxborough K. Imaging of chlorophyll a fluorescence: Theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance[J]. Journal of Experimental Botany, 2004, 55: 1195-1205. [18] Lichtenthaler H K, Buschmann C, Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer[J]. Photosynthetica, 2005, 43: 379-393. [19] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559-566. [20] Maxwell K, Johnson G N. Chlorophyll fluorescence- a practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668. [21] 李晓, 冯伟, 曾晓春. 叶绿素荧光分析技术及应用进展[J]. 西北植物学报, 2006, 26(10): 2186-2196. [22] 彭长连, 林桂珠. 拟南芥叶黄素缺失突变体叶绿素荧光猝灭的特性[J]. 生物化学与生物物理进展, 2003, 30(2): 251-256. [23] Horton P, Ruban A V, Walters R G. Regulation of light harvesting in green plants: Indication by non-photochemical quenching of chlorophyll fluorescence[J]. Plant Physiology, 1994, 106: 415-420. [24] Niyogi K K, Bjorkman O, Grossman A R. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching[J]. The Plant Cell, 1997, 9: 1369-1380. [25] Ruban A V, Horton P. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants[J]. Australia Journal of Plant Physiology, 1995, 22: 221-230. [26] Muller P, Li X P, Niyogi K K. Non-photochemical quenching: A response to excess light energy[J]. Plant Physiology, 2001, 125: 1558-1566. [27] 胡守林, 万素梅, 贾志宽. 黄土高原半湿润区不同生长年限苜蓿叶片光合性能研究[J]. 草业学报, 2008, 17(5): 60-67. [28] 薛延丰, 刘兆普. 外源钙离子缓解海水胁迫下菊芋光合能力下降的研究[J]. 草业学报, 2007, 16(6): 74-80. [29] Somervilte C R. Analysis of photosynthesis with mutants of higher plants and algae[J]. Annual Review of Plant Physiology, 1986, 37: 467-507. [30] Varotto C, Pesaresi P, Maiwald D, et al. Identification of photosynthetic mutants of Arabidopsis by automatic screening for altered effective quantum yield of photosystem 2[J]. Photosynthetica, 2000, 38(4): 497-504. [31] Gothandam K M, Kim E S, Cho H, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis[J]. Plant Molecular Biology, 2005, 58: 421-433. [32] Austin II J, Webber A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number[J]. Photosynthesis Research, 2005, 85: 373-384. [33] Miyoshi K, Ito Y, Serizawa A, et al. OsHAP3 genes regulate chloroplast biogenesis in rice[J]. The Plant Journal, 2003, 36: 532-540. [34] Mandel M A, Feldmann K A, Herrera E L, et al. CLA 1, a novel gene required for chloroplast development, is highly conserved in evolution[J]. The Plant Journal, 1996, 9(5): 649-658. [35] Walker M B, Roy L M, Coleman E, et al. The maize tha4 functions in sec-independent protein transport in chloroplasts and is related to hcf106 tatA, and tatb[J]. Journal of Cell Biology, 1999, 147: 267-276. [36] Fisk D G, Walker M B. A molecular cloning of the maize gene crpl reveals similarity between regulators of mitochondrial and chloroplast gene expression[J]. The EMBO Journal, 1999, 18: 2621-2630. [37] Meurer J, Meierhoff K, Westhoff P. Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterization by spectroscopy, immunoblotting and Northern hybridization[J]. Planta, 1996, 198: 385-396. [38] Bennoun P, Levine R P. Detecting mutants that have impaired photosynthesis by their increased level of fluorescence[J]. Plant Physiology, 1967, 42: 1284-1287. [39] Heck D A, Miles D, Chitnis P R. Characterization of two photosynthetic mutants of maize[J]. Plant Physiology, 1999, 120: 1129-1136. [40] Shikanai T, Munekage Y, Shimizu K, et al. Identification and characterization of arabidopsis mutants with reduced quenching of chlorophyll fluorescence[J]. Plant and Cell Physiology, 1999, 40(11): 1134-1142. [41] Das L, Martienssen R. Site-selected transposon mutagenesis at the HCF106 locus in maize[J]. The Plant Cell, 1995, 7: 287-294. [42] Felder S, Meierhoff K, Sane A P, et al. The nucleus-encoded HCF107 gene of arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH Transcripts in Chloroplasts[J]. The Plant Cell, 2001, 13: 2127-2141. [43] Schult K, Meierhoff K, Paradies S, et al. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana[J]. The Plant Cell, 2007, 19: 1329-1346. [44] Lezhneva L, meurer J. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana[J]. The Plant Journal, 2004, 38: 740-753. [45] Lennartz K, Bossmann S, Westhoff P, et al. HCF153, a novel nuclear-encoded factor necessary during a post-translational step in biogenesis of the cytochrome b6f complex[J]. The Plant Journal, 2006, 45: 101-112. [46] Peng L W, Ma J F, Chi W, et al. Low PSII accumulation 1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana[J]. The Plant Cell, 2006, 18: 955-969. [47] Ma J F, Peng L W, Guo J K, et al. LPA2 is required for efficient assembly of photosystem II in Arabidopsis thaliana[J].The Plant Cell, 2007, 19: 1980-1993. [48] Niyogi K K, Grossman A R, Bjrkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. The Plant Cell, 1998, 10: 1121-1134. [49] Walters R G, Shephard F, Rogers J M, et al. Identification of mutants of arabidopsis defective in acclimation of photosynthesis to the light environment[J]. Plant Physiology, 2003, 131: 472-481. [50] Kruse O, Nixon P J, Schmid G H, et al. Isolation of state transition mutants of chlamydomonas reinhardtii by fluorescence video imaging[J]. Photosynthesis Research, 1999, 61: 43-51. [51] Allen J F. Protein phosphorylation in regulation of photosynthesis[J]. Biochimica et Biophysica Acta, 1992, 1098: 275-335. [52] 许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002. 29-31. [53] Levine R P. A screening technique for photosynthetic mutants in unicellular algae[J]. Nature, 1960, 188: 339-340. |