[1] 刘一明, 程凤枝, 王齐, 等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值[J]. 草业学报, 2009, 18(3): 192-199. [2] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiology, 2001, 42: 1265-1273. [3] 张军, 王建波, 陈刚, 等. Na2CO3胁迫下星星草幼苗叶片电解质外渗率与PSII光能耗散的关系[J]. 草业学报, 2009, 18(3): 200-206. [4] 刘延吉, 张蕾, 田晓艳, 等. 盐胁迫对碱茅幼苗叶片内源激素、NAD激酶及Ca2+-ATPase的效应[J]. 草业科学, 2008, 25(4): 51-54. [5] Bethke P C, Jones R L. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species[J]. Plant Journal, 2001, 25:19-29. [6] Katsuhara M, Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots[J]. Plant Cell Physiology,1996, 37(2): 169-173. [7] Besson-Bard A,Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology,2008, 59: 21-39. [8] Ruan H H, Shen W B, Ye M B, et al. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Trriticum aestivum L.) leaves[J]. Chinese Science Bulletin, 2001, 46(23): 1993-1997. [9] Akio U, Andre T J, Takashi H, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515-523. [10] 樊怀福, 郭世荣, 焦彦生, 等. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J]. 生态学报, 2007, 27(2): 546-553. [11] 吴雪霞, 朱月林, 朱为民, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗生理影响[J]. 中国农业科学, 2006, 39(3): 575-581. [12] 樊怀福, 郭世荣, 段九菊, 等. 外源NO对NaCl胁迫下黄瓜(Cucumis sativus L.)幼苗生长和谷胱甘肽抗氧化酶系统的影响[J]. 生态学报, 2008, 28(6): 2511-2517. [13] 刘建新, 胡浩斌, 王鑫. 外源NO对盐胁迫下黑麦草幼苗根生长抑制和氧化损伤的缓解效应[J]. 植物研究, 2008, 28(1): 7-13. [14] 孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J]. 生态学报, 2008, 28(11): 5714-5722. [15] 刘建新, 胡浩斌, 王鑫. 外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响[J]. 植物研究, 2009, 29(3): 313-319. [16] 张远兵, 刘爱荣, 方蓉. 外源一氧化氮对镉胁迫下黑麦草生长和抗氧化酶活性的影响[J]. 草业学报, 2008, 17(4): 57-64. [17] 刘建新, 胡浩斌, 王鑫. 外源一氧化氮供体对镉胁迫下黑麦草幼苗活性氧代谢、光合作用和叶黄素循环的影响[J]. 环境科学学报, 2009, 29(3): 626-633. [18] 刘建新, 王鑫, 雷蕊霞. 外源一氧化氮供体SNP对黑麦草种子萌发和幼苗生长的影响[J]. 生态学杂志, 2007, 26(3): 393-398. [19] 马向丽, 魏小红, 龙瑞军. 外源一氧化氮提高一年生黑麦草抗冷性机制[J]. 生态学报, 2005, 25(6): 1269-1274. [20] Du Z Y, Bramlage W J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts[J]. Journal of Agriculture and Food Chemistry, 1992, 40: 1566-1570. [21] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear[J]. Plant Physiology, 1977, 59: 411-416. [22] Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate[J]. Acta Botanica Sinica, 2003, 45: 795-801. [23] Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton[J]. Crop Science, 1994, 34: 706-714. [24] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiology, 1981, 22: 867-880. [25] Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product of monodehydroascorbate radicals in thylakoids[J]. Plant Cell Physiology, 1992, 33: 541-553. [26] Hossain M A, Asada K. Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme[J]. Plant Cell Physiology, 1984, 25(1): 85-92. [27] Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133: 21-25. [28] Bogdan C. Nitric oxide and the regulation of gene expression[J]. Trends in Cell Biology, 2001, 11: 66-75. [29] 胡向阳, 蔡伟明. 一氧化氮与激发子诱导的植物抗病防卫反应[J]. 生命科学, 2005, 17(2): 176-182. [30] Xiang C, Oliver D J. Glutathione metabolish genes coordimately respond to heavy metals and jasmonic acid in Arabidopsis[J]. Plant Cell, 1998, 10: 1539-1550. [31] 刘正鲁, 朱月林, 魏国平, 等. NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响[J]. 西北植物学报, 2007, 27(9): 1795-1800. [32] Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system[J]. Physiologia Plantarum, 2001, 112: 487-494. [33] Sen C K. Glutathione homeostasis in response to exercise training and nutritional supplements[J]. Molecular Cell Biochemistry, 1999, 196: 31-42. [34] Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds[J]. Journal of Plant Physiology, 2006, 163: 1259-1266. |