草业学报 ›› 2010, Vol. 19 ›› Issue (6): 263-271.
陈丽萍,张丽静,傅华*
收稿日期:
2009-10-02
出版日期:
2010-06-25
发布日期:
2010-12-20
作者简介:
陈丽萍(1987-),女,青海互助人,在读硕士。E-mail:chenlp04@lzu.cn
基金资助:
CHEN Li-ping, ZHANG Li-jing, FU Hua
Received:
2009-10-02
Online:
2010-06-25
Published:
2010-12-20
摘要: 铁蛋白(ferritin)是一种铁结合和存储蛋白,广泛存在于动物、植物和微生物体内,是生物体内的一种保守性较高的多功能多亚基蛋白。植物铁蛋白作为专门的贮铁蛋白,是植物光合作用和固氮等生化反应的铁源,不仅调节体内铁的含量,而且是一种重要的胁迫反应蛋白,调控铁生物功能,在植物的发育、抵抗氧化损害等方面发挥重要的作用。本研究从铁蛋白的结构、功能及基因克隆、表达和遗传转化等方面,概述了其在植物分子生物学中的研究进展及其应用情况。
中图分类号:
陈丽萍,张丽静,傅华. 植物铁蛋白的研究进展[J]. 草业学报, 2010, 19(6): 263-271.
CHEN Li-ping, ZHANG Li-jing, FU Hua. Progress in research on plant ferritin[J]. Acta Prataculturae Sinica, 2010, 19(6): 263-271.
[1] Yona C, Philip B. Iron nutrition of plants in calcareous soils[J]. Advances in Agronomy, 1982, 135: 217-240. [2] Anderson W B. Diagnosis and correction of Fe deficiency in field crops: An overview[J]. Journal of Plant Nutrition, 1982, 5: 785-795. [3] 苏振渝. 毛皮动物缺铁性贫血[J]. 北方牧业, 2003, 24: 27. [4] 蔡秋艺, 郭长虹, 毛文艳, 等. 植物铁蛋白在人类铁营养中的作用[J]. 中国农学通报, 2007, 23: 125-128. [5] Andrews S C, Arosio P, Bottke W, et al. Structure, function and evolution of ferritins[J]. Journal of Inorganic Biochemistry, 1992, 47: 161-174. [6] Harrison P M, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation[J]. Biochimica et Biophysica Acta, 1996, 1275: 161-203. [7] Goto F, Yoshihara T, Masuda T, et al. Genetic improvement of iron content and stress adaptation in plants using ferritin gene[J]. Biotechnology & Genetic Engineering Reviews, 2001, 18(3): 51-71. [8] LaulhereJ P, Briat J F. Iron release and uptake by plant ferritin: Effects of pH, reduction and chelation[J]. Biochemical Journal, 1993, 290: 693-696. [9] Briat J F. Metal-iron-mediated oxidative stress and its control[A]. In: Montagu M, Inze D, Oxidative Stress in Plants[M]. London: Talor and Francis Publishers, 2002: 171-189. [10] 习阳, 刘祥林, 黄勤妮. 植物铁蛋白转基因的应用[J]. 植物生理学通讯, 2003, 39(3): 284-288. [11] Briat J F. Roles of ferritin in plants[J]. Journal of Plant Nutrition, 1996, 19(8-9): 1331-1342. [12] Proudhon D, Briat J F, Lescure A M. Iron induction of ferritin synthesis in soybean cell suspensions[J]. Plant Physiology, 1989, 90: 586-590. [13] Hyde B B, Hodge A J, Kahn A, et al. Studies of phytoferritin identification and localization[J]. Journal of Ultrastructure Research, 1963, 9: 248-258. [14] Lobreaux S, Yewdall S J, Briat J F, et al. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin[J]. Biochemical Journal, 1992, 288: 931-939. [15] Lescure A M, Proudhon D, Pesey H, et al. Ferritin gene transcription is regulated by iron in soybean cell cultures[J]. Proceedings of the National Academy of Sciences, USA, 1991, 88: 8222-8226. [16] Jean-Michel P, Van Wuytswinkel O, Briat J F, et al. Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron[J]. The Journal of Biological Chemistry, 2001, 276(8): 5584-5590. [17] Deak M, Horvath G V, Davletova S. Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens[J]. Nature Biotechnology, 1999, 17(2): 192-196. [18] Fobis-Loisy I, Loridon K, Lobreaux S, et al. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid[J]. European Journal of Biochemistry, 1995, 232(3): 609-619. [19] 徐晓晖, 郭泽建, 程志强, 等. 铁蛋白基因的水稻转化及其功能初步分析[J]. 浙江大学学报(农业与生命科学版), 2003, 29(1): 49-54. [20] 叶霞. 苹果、梨铁蛋白基因的克隆及菜豆铁蛋白基因在转基因苹果和番茄植株中的表达特性研究[D].南京: 南京农业大学, 2006. [21] 杜仁杰, 曲跃军, 吴丽丽, 等. 过量表达铁蛋白基因的转基因烟草抗Co2+能力分析[J]. 黑龙江医药, 2009, 22(3): 302-306. [22] Harrison P M, Artymiuk P J, Ford G C, et al. Probing structure-function relations in ferritin and bacterioferritin[J]. Advances in Inorganic Chemistry, 1991, 36: 449-486. [23] Harrison P M, Ford G C, Smith J M A, et al. The location of exon boundaries in the multimeric iron-storage protein ferritin[J]. Biology Metals, 1991, 4: 95-99. [24] Ferreira F, Bucchini D, Martin M E, et al. Early embryonic lethality of H ferritin gene deletion in mice[J]. The Journal of Biological Chemistry, 2000, 275(30): 21-24. [25] Lawson D M, Artymiuk P J, Yewdall S J, et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts[J]. Nature, 1991, 349: 541-544. [26] Ragland M, Theil E C. Ferritin (mRNA, protein) and iron concentrations during soybean nodule development[J]. Plant Molecular Biology, 1993, 21: 555-560. [27] 叶霞, 黄晓德, 陶建敏, 等. 转基因苹果组培苗铁蛋白基因在转录水平上的表达[J]. 果树学报, 2006, 23(4): 491-494. [28] Roswitha B, Renate M, Dieter N, et al. Excessive iron accumulation in the pea mutants dgl and brz: Subcellular localization of iron and ferritin[J]. Planta, 1998, 207: 217-223. [29] Manuel A M, Lisa M B, Pedro R, et al. Stress-induced legume root nodule senescence: Physiological, biochemical, and structural alterations[J]. Plant Physiology, 1999, 121(1): 97-112. [30] 宁春红, 杨东鹤, 蔡秋艺, 等. 植物铁蛋白与植物发育[J]. 黑龙江农业科学, 2007, 4: 103-104. [31] Seckbach J. Studies on the deposition of plant ferritin as influenced by iron supply to iron-deficient beans[J]. Journal of Ultrastructure Research, 1968, 22: 413-423. [32] Lobréaux S, Briat J F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development[J]. Biochemical Journal, 1991, 274: 601-606. [33] Huang J S, Barker K R. Influence of Heterodera glucines on leghemoglobins of soybean nodules[J]. Phytopathology, 1983, 73: 1002-1004. [34] Becana M, Moran J F, Iturbe-Ormaetxe I. Iron-dependent oxygen free radical generation in plants subjected to environmental stress: Toxicity and antioxidant protection[J]. Plant and Soil, 1998, 201: 137-147. [35] Balla G, Jacob H S, Balla J, et al. Ferritin: A cytoprotective antioxidant stratagem of endothelium[J]. The Journal of Biological Chemistry, 1992, 267: 18148-18153. [36] Marinos N G. Multifunctional plastics in the meristematic region of potato tuber buds[J]. Journal of Ultrastructure Research, 1967, 17: 91-113. [37] Theil E C, Hase T. Plant and microbial ferritin, and cellular function in animals, plants and microorganisms[J]. Annual Review of Biochemistry, 1993, 56: 289-315. [38] 吴平, 印莉萍, 张立平. 植物营养分子生理学[M]. 北京: 科学技术出版社, 2001. [39] 刘宝娟, 张文兵. 铁蛋白的结构、功能及表达调控[J]. 饲料工业, 2009, 30(4): 42-47. [40] Alison J W, Ronald E W, Barrie E. Occurrence and expression of members of the ferritin gene family in cowpeas[J]. Biochemical Journal, 1999, 337: 523-530. [41] Sczekan S R, Joshi J G. Isolation and characterization of ferritin from soypeas[J]. Journal of Biological Chemistry, 1987, 262(28): 13780-13788. [42] Vicky B W, Charles A. Leaf senescence in Brassica napus: Cloning of senescence related genes by subtractive hybridization[J]. Plant Molecullar Biology, 1997, 33(5): 821-834. [43] Jiang T B. Isolation and expression pattern analysis of two ferritin genes in tobacco[J]. Journal of Integrative Plant Biology, 2005, 47: 44-47. [44] 郭长虹, 王永斌, 李丽娅, 等. 黄花苜蓿铁蛋白基因cDNA的克隆与序列分析[J]. 哈尔滨工业大学学报, 2009, 41(3): 141-145. [45] 周志钦, 成明昊, 周泽扬, 等. 苹果铁结合蛋白基因的克隆和序列分析[J]. 生物工程学报, 2001, 17(3): 342-344. [46] Van Wuytswinkel O, Briat J F. Conformational change and in vitro core-formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin[J]. Biochemical Journal, 1995, 305: 959-965. [47] Gaymard F, Boucherez J, Briat J F. Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway in dependent of abscisic acid[J]. Biochemical Journal, 1996, 318: 67-73. [48] Wei J Z, Elizabeth C T. Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean)[J]. The Journal of Biological Chemistry, 2000, 275(23): 17488-17493. [49] Wicks R E, Entsch B. Functional genes found for three different plant ferritin subunits in the legume, Vigna unguiculata[J]. Biochemical and Biophysical Research Communications, 1993, 192(2): 813-819. [50] Van Wuytswinkel O, Vansuyt G, Grignon N, et al. Iron homeostasis alteration in transgenic tobacco overexpressing ferritin[J]. The Plant Journal, 1999, 17(1): 93-97. [51] Briat J F, Lobreaux S. Iron transport and storage in plants[J]. Trends in Plant Science, 1997, 2: 187-193. [52] Lobreaux S, Thoiron S, Briat J F. Indruction of ferritin synthesis in maize leaves by an iron-mediated oxidative stress[J]. The Plant Journal, 1995, 8: 443-449. [53] Petit J M, Briat J F, Lobreaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical Journal, 2001, 359: 575-582. [54] Goto F, Yoshihara T, Saiki H. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin[J]. Theoretical and Applied Genetics, 2000, 100: 658-664. [55] Goto F, Yoshihara T, Shigemoto N. Iron fortification of rice seed by the soybean ferritin gene[J]. Nature Biotechnology, 1999, 17: 282-286. [56] Goto F, Yoshihara T, Saiki H. Iron accumulation in tobacco plants expressing soybean ferritin gene[J]. Transgenic Research, 1998, 7: 173-180. [57] Lucca P, Hurrell R, Potrykus I. Fighting iron deficiency anemia with Iron-rich rice[J]. Journal of the American College of Nutrition, 2002, 21(3): 184-190. [58] Georgia D, Paul C, Eva S. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds[J]. Transgenic Research, 2000, 9: 445-452. [59] Theil E C, Burton J W, Beard J L. A sustainable solution for dietary iron deficiency through plant biotechnology and breeding to increase seed ferritin control[J]. European Journal of Clinical Nutrition, 1997, 51(Suppl 4): 28-31. [60] 刘燕. 红小豆铁蛋白基因的克隆及在水稻中的转化[D]. 北京: 中国农业大学, 2005. [61] Beard J L, Burton J W, Theil E C. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats[J]. Journal of Nutrition, 1996, 126(1): 154-160. [62] Murray Kolb L E, Takaiwa F, Goto F, et al. Transgenic rice is a source of iron for iron-depleted rats[J]. Journal of Nutrition, 2002, 132(5): 957-960. [63] 梁哲, 姜三杰, 未丽, 等. 三叶草基因工程研究进展[J]. 草业学报, 2009, 18(2): 205-211. [64] 张振霞, 杨中艺, 储成才. 禾本科牧草与草坪草转基因研究进展[J]. 草业学报, 2004, 13(6): 92-98. [65] 卢少云, 郭振飞. 草坪草逆境生理研究进展[J]. 草业学报, 2003, 12(4): 7-13. |
[1] | 王大为,赵军,韩涛,李丽丽. 基于CSCS的黑河上游潜在植被NPP及其水热关系研究[J]. 草业学报, 2014, 23(6): 11-19. |
[2] | 周欣,左小安,赵学勇,王少昆,罗永清,岳祥飞,张腊梅. 半干旱沙地生境变化对植物地上生物量及其碳、氮储量的影响[J]. 草业学报, 2014, 23(6): 36-44. |
[3] | 徐立明,张振葆,梁晓玲,卢文,张辰路,黄凤珠,王雷,张素芝. 植物抗旱基因工程研究进展[J]. 草业学报, 2014, 23(6): 293-303. |
[4] | 王成聪,高素萍,黄丽,林啸,张硕,雷霆. 模拟酸雨与Cd对紫萼膜脂过氧化及形态特征的影响[J]. 草业学报, 2014, 23(6): 336-341. |
[5] | 宋辉,南志标,蔡小宁,钟小仙,顾洪如. 海滨雀稗液泡膜H+-PPase(PvVP1)5'端的克隆和序列分析[J]. 草业学报, 2014, 23(5): 168-174. |
[6] | 胡澍,焦菊英,杜华栋,苗芳. 黄土丘陵沟壑区不同立地环境下植物的抗氧化特性[J]. 草业学报, 2014, 23(5): 1-12. |
[7] | 李中林,郭开秀,周守标,郑和权,刘坤. 光强对马兰形态、生理及黄酮类化合物含量的影响[J]. 草业学报, 2014, 23(4): 162-170. |
[8] | 王佳,郑琳琳,顾天培,王学峰,王迎春. 珍稀泌盐植物长叶红砂两个WRKY转录因子的克隆及表达分析[J]. 草业学报, 2014, 23(4): 122-129. |
[9] | 郭红超,严成,魏岩. 木地肤的开花动态与花粉活力及柱头可授性研究[J]. 草业学报, 2014, 23(4): 87-93. |
[10] | 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报, 2014, 23(4): 322-329. |
[11] | 孙天航,刘玫,孙雪芹,程薪宇,茹剑. 东北委陵菜属植物叶形态结构的研究及其分类学价值的探讨[J]. 草业学报, 2014, 23(3): 75-84. |
[12] | 鲁艳,雷加强,曾凡江,徐立帅,彭守兰,刘国军. NaCl处理对梭梭生长及生理生态特征的影响[J]. 草业学报, 2014, 23(3): 152-159. |
[13] | 程薪宇,刘玫,张欣欣,王臣,李滨胜. 东北毛茛科植物营养器官结构及其系统学意义[J]. 草业学报, 2014, 23(3): 62-74. |
[14] | 王丹,龚春霞,苟亚峰,周路,朱军保,高剑峰. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103. |
[15] | 段晓凤,张磊,卫建国,朱永宁,杨洋,金飞. 宁夏盐池牧草返青期预测及生产潜力初步分析[J]. 草业学报, 2014, 23(2): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||