Reference:[1]Xu S, Li J L, Zhao D H. Research advances in physiological ecological and biochemical characteristics of Festuca arundinacea[J]. Acta Prataculturae Sinica, 2004, 13(1): 58-64.[2]Chen J B, Yan J, Zhang T T, et al. Growth responses of four warm season turfgrasses to long-term salt stress[J]. Acta Prataculturae Sinica, 2008, 17(5): 30-36.[3]Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79-86.[4]Liang H M, Xia Y, Du F, et al. Effects of NaCl stress on physiological index of two Lawn grasses[J]. Grassland of China, 2001, 23(5): 27-30.[5]Zeng G P, Zhang X, Liu H L, et al. Effect of AM Fungi on salt tolerance of Carthamus tinctorius L. under salt stress[J]. Plant Physiology Journal, 2012, 47(11): 1069-1074.[6]Ye S P, Zeng X H, Xin G R, et al. Effects of Arbuscular Mycorrhizal Fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels[J]. Acta Prataculturae Sinica, 2013, 22(1): 46-52.[7]Lu J Y, Mao Y M, Shen L Y, et al. Effects of VA mycorrhizal fungi inoculated on drought tolerance of wild jujube(Zizyphus spinosus Hu) seedlings[J]. Acta Horticulturae Sinica, 2003, 30(1): 29-33.[8]Liu J, Xiao B, Wang L X, et al. Influence of AM on the growth of tea plant and tea quality under salt stress[J]. Journal of Tea Science, 2013, 33(2): 140-146.[9]Wang S H, Wang X J, Wang Q, et al. Responses of rhizosphere microorganisms to arbuscular mycorrhizal fungi and their effects on host plants[J]. Acta Prataculturae Sinica, 2007, 16(3): 108-113.〖ZK)[10]Liu J, Maldonado Mendoza I, Lopez Meyer M, et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots[J]. The Plant Journal, 2007, 50(3): 529-544.[11]Gao C. Effects of arbuscular mycorrhizal fungi on the growth and salt tolerance of Pyrus betulaefolia seedlings[D]. Chongqing: Southwestern University, 2013. [12]Guo S X, Liu R J. Effects of arbuscular mycorrhizal fungi Glomus mosseae on salt tolerance of Paeonia suffruticosa Andr.[J]. Plant Physiology Communications, 2010, 46(10): 1007-1011.[13]Yang R H, Liu R J, Liu L C, et al. Effects of arbuscular mycorrhizal fungi and salicylic acid on salt tolerance of strawberry (Fragariaxananassa Duch) plants[J]. Scientia Agricultura Sinica, 2009, 42(5): 1590-1594.[14]Fan R P, Zhou Q, Zhou B, et al. Effects of salinization stress on growth and the antioxidant system of tall fescue[J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117.[15]Liu R J, Luo X S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi[J]. New Phytologist, 1994, 128(1): 89-92.[16]Wang X K. Plant Physiology and Biochemistry experimental principles and techniques[M]. Beijing: Higher Education Press, 2006: 1-283.[17]Hao Z B, Cang J, Xu Z. Plant physiology experiments[M]. Harbin: Harbin Institute of Technology Press, 2004: 1-147.[18]Lao J C. Soil agrochemical analysis handbook[M]. Beijing: Agricultural Press, 1988: 656-657.[19]He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133.[20]Alguacil M M, Hernández J A, Caravaca F, et al. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil[J]. Physiologia Plantarum, 2003, 118(4): 562-570.[21]Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002, 12(4): 185-190.[22]Jiang M, Zhang J. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53: 2401-2410.[23]Garg N, Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt induced nodule senescence in Cajanus cajan (pigeonpea)[J]. Journal of Plant Growth Regulation, 2008, 27(2): 115-124.[24]Kaya C, Ashraf M, Sonmez O, et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity[J]. Scientia Horticulturae, 2009, 121(1): 1-6.[25]Juniper S, Abbott L. Vesicular arbuscular mycorrhizas and soil salinity[J]. Mycorrhiza, 1993, 4(2): 45-57.[26]Li X T, Cao J, Wei X J, et al. Effect of extended exposure to NaCl stress on the growth, ion distribution and photosynthetic characteristics of malting barley (Hordeum vulgare)[J]. Acta Prataculturae Sinica, 2013, 22(6): 108-116.[27]Al Karaki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhiza, 2001, 11(1): 43-47.[28]Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiol gy, 1995, 109(3): 735.[29]Li H Y, Zheng Q S, Liu Z P, et al. Effects of various concentration of seawater on the growth and physiological characteristics of Lactuca indica seedlings[J]. Bulletin of Botany, 2010, 45(1): 73-78.[30]Rabie G H, Almadini A M. Role of bioinoculants in development of salt tolerance of Vicia faba plants under salinity stress[J]. African Journal of Biotechnology, 2005, 4(3): 210-222. [31]Pan R C, Dong Y D. Plant Physiology[M]. Beijing: Higher Education Press, 1995: 1-206.[32]Xue X D, Dong X Y, Duan Y X, et al. A comparison of salt resistance of three kinds of Zoysia at different salt concentrations[J]. Acta Prataculturae Sinica, 2013, 22(6): 315-320.[33]Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity stressed soybean after inoculation with salt pre treated mycorrhizal fungi[J]. Journal of Plant Physiology, 2007, 164(9): 1144-1151.[34]Jindal V, Atwal A, Sekhon B S, et al. Effect of vesicular arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 31(4): 475-481.[35]Sannazzaro A I, Echeverría M, Albertó E O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J]. Plant Physiology and Biochemistry, 2007, 45(1): 39-46.[36]Yuan X X, Wang J, Xie Y J, et al. Effects of Carbon Monixide on salt tolerance and Proline content of roots in wheat seedling[J]. Plant Physiology Communications, 2009, 45(6): 567-570.[37]Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistance plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56(3): 525-539.[38]Munns R, Cramer G R. Is coordination of leaf and root growth mediated by abscisic acid? Opinion[J]. Plant and Soil, 1996, 185(1): 33-49.[39]He Z Q, Li H X, Tang H R, et al. Effect of arbuscular mycorrhizal fungi on tomato endogenous under NaCl stress[J]. Acta Agriculturae Nucleatae Sinica, 2010, 24(5): 1099-1104.[40]Yu J X, Li H, Guo S X, et al. Influence of arbuscular mycorrhizal fungi on endogenous hormone Levels in tomato plants[J]. Journal of Qingdao Agricultural University, 2010, 27(2): 100-104.参考文献:[1]徐胜, 李建龙, 赵德华. 高羊茅的生理生态及其生化特性研究进展[J]. 草业学报, 2004, 13(1): 58-64.[2]陈静波, 阎君, 张婷婷, 等. 四种暖季型草坪草对长期盐胁迫的生长反应[J]. 草业学报, 2008, 17(5): 30-36.[3]李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4): 79-86.[4]梁惠敏, 夏阳, 杜峰, 等. 盐胁迫对两种草坪草抗性生理生化指标影响的研究[J]. 中国草地, 2001, 23(5): 27-30.[5]曾广萍, 张霞, 刘红玲, 等. 盐胁迫下AM真菌对红花耐盐性的影响[J]. 植物生理学报, 2012, 47(11): 1069-1074.[6]叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌 (AMF) 对狗牙根生长与再生的影响[J]. 草业学报, 2013, 22(1):46-52.[7]鹿金颖, 毛永民, 申连英, 等. VA 菌根真菌对酸枣实生苗抗旱性的影响[J]. 园艺学报, 2003, 30(1): 29-33.[8]柳洁, 肖斌, 王丽霞, 等. 盐胁迫下丛枝菌根 (AM) 对茶树生长及茶叶品质的影响[J]. 茶叶科学, 2013, 33(2): 140-146.[9]王树和, 王晓娟, 王茜, 等. 丛枝菌根及其宿主植物对根际微生物作用的响应[J]. 草业学报, 2007, 16(3): 108-113.[10]Liu J, Maldonado-Mendoza I, Lopez-Meyer M, et al. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots[J]. The Plant Journal, 2007, 50(3): 529-544.[11]高崇. 接种AM真菌对盐胁迫下杜梨实生苗生长及耐盐性的影响研究[D]. 重庆: 西南大学, 2013. [12]郭绍霞, 刘润进. 丛枝菌根真菌 Glomus mosseae 对盐胁迫下牡丹渗透调节的影响[J]. 植物生理学通讯, 2010, 46(10): 1007-1011.[13]杨瑞红, 刘润进, 刘成连, 等. AM 真菌和水杨酸对草莓耐盐性的影响[J]. 中国农业科学, 2009, 42(5): 1590-1594.[14]樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响[J]. 草业学报, 2012, 21(1): 112-117.[15]Liu R J, Luo X S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi[J]. New Phytologist, 1994, 128(1): 89-92.[16]王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006: 1-283.[17]郝再彬, 苍晶, 徐仲. 植物生理实验[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004: 1-147.[18]劳家柽. 土壤农化分析手册[M]. 北京: 农业出版社, 1988: 656-657.[19]He Z Q, He C X, Zhang Z B, et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 128-133.[20]Alguacil M M, Hernández J A, Caravaca F, et al. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil[J]. Physiologia Plantarum, 2003, 118(4): 562-570.[21]Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002, 12(4): 185-190.[22]Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J]. Journal of Experimental Botany, 2002, 53: 2401-2410.[23]Garg N, Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan(pigeonpea)[J]. Journal of Plant Growth Regulation, 2008, 27(2): 115-124.[24]Kaya C, Ashraf M, Sonmez O, et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity[J]. Scientia Horticulturae, 2009, 121(1): 1-6.[25]Juniper S, Abbott L. Vesicular-arbuscular mycorrhizas and soil salinity[J]. Mycorrhiza, 1993, 4(2): 45-57.[26]李先婷, 曹靖, 魏晓娟, 等. NaCl渐进胁迫对啤酒大麦幼苗生长, 离子分配和光合特性的影响[J]. 草业学报, 2013, 22(6):108-116.[27]Al-Karaki G N, Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhiza, 2001, 11(1): 43-47.[28]Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiology, 1995, 109(3):735.[29]李洪燕, 郑青松, 刘兆普, 等. 海水胁迫对苦荬菜幼苗生长及生理特性的影响[J]. 植物学报, 2010, 45(1): 73-78.[30]Rabie G H, Almadini A M. Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress[J]. African Journal of Biotechnology, 2005, 4(3): 210-222.[31]潘瑞炽, 董愚得. 植物生理学[M]. 北京: 高等教育出版社, 1995: 1-206.[32]薛秀栋, 董晓颖, 段艳欣, 等. 不同盐浓度下3种结缕草的耐盐性比较研究[J]. 草业学报, 2013, 22(6): 315-320.[33]Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi[J]. Journal of Plant Physiology, 2007, 164(9): 1144-1151.[34]Jindal V, Atwal A, Sekhon B S, et al. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiology and Biochemistry, 1993, 31(4): 475-481.[35]Sannazzaro A I, Echeverría M, Albertó E O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J]. Plant Physiology and Biochemistry, 2007, 45(1): 39-46.[36]袁星星, 王娟, 谢彦杰, 等. 外源一氧化碳对小麦幼苗耐盐性以及根中脯氨酸含量的影响[J]. 植物生理学通讯, 2009, 45(6):567-570.[37]Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistance plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56(3): 525-539.[38]Munns R, Cramer G R. Is coordination of leaf and root growth mediated by abscisic acid? Opinion[J]. Plant and Soil, 1996, 185(1): 33-49.[39]贺忠群, 李焕秀, 汤浩茹, 等. 丛枝菌根真菌对 NaCl 胁迫下番茄内源激素的影响[J]. 核农学报, 2010, 24(5): 1099-1104.[40]于建新, 李辉, 郭绍霞, 等. 丛枝菌根真菌对番茄植株内源激素含量的影响[J]. 青岛农业大学学报 (自然科学版), 2010, 27(2): 100-104. |