草业学报 ›› 2014, Vol. 23 ›› Issue (4): 322-329.DOI: 10.11686/cyxb20140439
郭玉朋*
收稿日期:
2013-04-15
出版日期:
2014-08-20
发布日期:
2014-08-20
作者简介:
郭玉朋(1975-),男,青海西宁人,讲师。E-mail: guoyup@lzu.edu.cn
GUO Yu-peng
Received:
2013-04-15
Online:
2014-08-20
Published:
2014-08-20
摘要: 光呼吸是和光合作用密切相关的一个过程,它起始于光合作用碳固定阶段的第1个酶,1,5-二磷酸核酮糖(RuBP)羧化/加氧酶的加氧反应。RuBP加氧生成2-磷酸乙醇酸,这是一种对光合作用有抑制作用的物质,通过光呼吸可以转化成3-磷酸甘油酸(3-PGA),作为卡尔文循环的底物被利用。由于这一过程释放CO2及NH3,消耗还原力NADPH和能量ATP,因此被认为是不利于光合作用的一个浪费能量的过程。但光呼吸也有其有利的一面。在强光下,光呼吸可以通过调节电子传递、消耗能量等方式,减轻由于光能过剩造成的光抑制及光氧化对光合机构的伤害。对光呼吸途径基因的克隆,有助于更好地了解光呼吸的生理功能,并通过对基因的修饰,达到调控光呼吸的目的,使作物增产。在这里,本文就关于光呼吸的途径、生理功能、基因克隆及光呼吸调控几个方面的内容做了综述。
中图分类号:
郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报, 2014, 23(4): 322-329.
GUO Yu-peng. A study on advances in plant photorespiration[J]. Acta Prataculturae Sinica, 2014, 23(4): 322-329.
Reference:[1]Eckardt N A. Photorespiration revisited[J]. The Plant Cell, 2005, 17: 2139-2141.[2]Li Z X, Zhao S J, Meng Q W. Pathways and function of photorespiration[J]. Chinese Bulietin of Botany, 2003, 20: 190-197.[3]Wu W H. Plant Physiology[M]. Beijing: Science Press, 2003: 117-176.[4]Wingler A, Lea P J, Quick W P, et al. Photorespiration: metabolic pathways and their role in stress protection[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 2000, 355: 1517-1529.[5]Igarashi D, Tsuchida H, Miyao M, et al. Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration[J]. Plant Physiology, 2006, 142: 901-910.[6]Coschigano K T, Melo-Oliveira R, Lim J, et al. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation[J]. The Plant Cell, 1998, 10: 741-752.[7]Sharkey T D. Estimating the rate of photorespiration in leaves[J]. Physiologia Plantarum, 1988, 73: 147-152.[8]Kuang T Y. Light Use Efficiency and Regulation of Crops[M]. Jinan: Shandong Science and Technology Press, 2004: 1-28.[9]Zelitch I. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase[J]. Plant Physiology, 1966, 41: 1623-1631.[10]Osmond C B, Grace S C. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis[J]. Journal of Experimental Botany, 1995, 46: 1351-1362.[11]Somerville C R. An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration[J]. Plant Physiology, 2001, 125: 20-24.[12]Wang Q, Wen X G, Zhang Q D. Progress in studies on photoinhibition[J]. Chinese Bulletin of Botany, 2003, 20: 539-548.[13]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta (BBA) Bioenergetics, 2007, 1767: 414-421.[14]Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384: 557-560.[15]Davison P A, Hunter C N, Horton P. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis[J]. Nature, 2002, 418: 203-206.[16]Nishiyama Y, Allakhverdiev S I, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta (BBA) Bioenergetics, 2006, 1757: 742-749.[17]Takahashi S, Bauwe H, Badger M. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis[J]. Plant Physiology, 2007, 144: 487-494.[18]Anderson L E. Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases[J]. Biochimica et Biophysica Acta (BBA), 1971, 235: 237-244.[19]Kelly G J, Latzko E. Inhibition of spinach-leaf phosphofructokinase by 2 phosphoglycollate[J]. Federation of European Biochemical Societies, 1976, 68: 55-58.[20]Campbell W J, Ogren W L. Glyoxylate inhibition of ribulosebisphosphate carboxylase oxygenase: Activation in intact, lysed and reconstituted chloroplasts[J]. Photosynthesis Research, 1990, 23: 257-268.[21]Allan W L, Clark S M, Hoover G J, et al. Role of plant glyoxylate reductases during stress: a hypothesis[J]. The Biochemical Journal, 2009, 423: 15-22.[22]Bauwe H, Hagemann M, Fernie A R. Photorespiration: players, partners and origin[J]. Trends in Plant Science, 2010, 15: 330-336.[23]Mouillon J M, Aubert S, Bourguignon J, et al. Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism[J]. The Plant Journal, 1999, 20: 197-205.[24]Engel N, Vanden K, Kolukisaoglu U, et al. Deletion of glycine decarboxylase in Arabidopsis is lethal under non-photorespiratory conditions[J]. Plant Physiology, 2007, 144: 1328-1335.[25]Novitskaya L, Trevanion S J, Driscoll S, et al. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis[J]. Plant, Cell & Environment, 2002, 25: 821-835.[26]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis 2001 status[J]. Current Opinion in Plant Biology, 2001, 4: 301-308.[27]Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance[J]. Trends in Genetics, 2000, 16: 449-455.[28]Neill S, Desikan R J. Hydrogen peroxide signaling[J]. Current Opinion in Plant Biology, 2002, 5: 388-395.[29]Kunkel B, Brooks D. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 2002, 5: 325-331.[30]Wu G, Shortt B J, Lawrence E B, et al. Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants[J]. Plant Physiology, 1997, 115: 427-435.[31]Michele C H. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000, 44: 321-334.[32]Jia X J, Dong L H, Ding C B, et al. Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var.medio-pictum leaf[J]. Acta Prataculturae Sinica, 2013, 22(5):248-255.[33]Yu L, Liu Y H, Zhou L P, et al. A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(4):106-115.[34]Li Z Y, Xing X F, Tang H, et al. Effects of aluminum and acid stresses on the growth and antioxidant enzyme activities of rhizobia isolated from Medicago lupulina and M.sativa[J]. Acta Prataculturae Sinica, 2013, 22(3):146-153.[35]Taler D, Galperin M, Benjamin I, et al. Plant eR genes that encode photorespiratory enzymes confer resistance against disease[J]. The Plant Cell, 2004, 16: 172-184.[36]Juan M, Raquel M, Carmen C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress[J]. The Plant Journal, 2005, 41: 451-463.[37]Liu C P, Min Y J, Wang M C. Effect of hydrogen sulfite sodium on the photosynthetic production and the content of protein of Vicia faba[J]. Forest By-Product and Speciality in China, 2007, 6:8-11.[38]Fu W W, Xi Y J, Huang Z, et al. Effect of photorespiration inhibitor on citrus fruit quality[J]. Shaanxi Journal of Agricultural Sciences, 2009, 55:86-87.[39]Li Y C, Ma Y, Hao J J, et al. Progress to improve photosynthesis methods of crops[J]. Journal of Changjiang Vegetables, 2009, 14:6-8.[40]Ku M, Cho D, Li X, et al. Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences[J]. Novartis Foundation Symposium, 2001, 236: 100-111.[41]Kebeish R, Niessen M, Thiruveedhi K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J]. Nature Biotechnology, 2007, 25: 593-599.[42]Hibberd J M, Sheehy J E, Langdale J A. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility[J]. Current Opinion in Plant Biology, 2008, 11: 228-231.[43]Renne P, Dressen U, Hebbeker U, et al. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2[J]. The Plant Journal, 2003, 35: 316-331.[44]Schwarte S, Bauwe H. Identification of the photorespiratory 2 phosphoglycolate phosphatase, PGLP1, in Arabidopsis[J]. Plant Physiology, 2007, 144: 1580-1586.[45]Foyer C H, Bloom A J, Queval G, et al. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling[J]. Annual Review of Plant Biology, 2009, 60: 455-484.[46]Somerville C R, Ogren W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7: 171-174.[47]Somerville C R, Ogren W L. Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity[J]. Plant Physiology, 1981, 67: 666-671.[48]Voll L M, Jamai A, Renne P, et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1[J]. Plant Physiology, 2006, 140: 59-66.[49]McHale N A, Havir E A, Zelitch I. A mutant of Nicotiana sylvestris deficient in serine glyoxylate aminotransferase activity. Callus induction and photorepiratory toxicity in regenerated plants[J]. Theoretical and Applied Genetics, 1988, 76: 71-75.[50]Xu H W, Jiang J Z, Peng X X. Research progress in photorespiratory mutants[J]. Bulletin of Botany, 2010, 45(4): 393-403.[51]Blackwell R D, Murray A J, Lea P J, et al. The value of mutants unable to carry out photorespiration[J]. Photosynthesis Research, 1988, 16: 155-176.[52]Zelitch I, Schultes N P, Peterson R B, et al. High glycolate oxidase activity is required for survival of maize in normal air[J]. Plant Physiology, 2008, 149: 195-204.[53]Jordan D B, Ogren W L. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase[J]. Planta, 1984, 161: 308-313.[54]Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions[J]. Plant, Cell & Environment, 2007, 30: 258-270.[55]Peterhansel C, Niessen M, Kebeish R M. Metabolic engineering towards the enhancement of photosynthesis[J]. Photochemistry and Photobiology, 2008, 84: 1317-1323.参考文献:[1]Eckardt N A. Photorespiration revisited[J]. The Plant Cell, 2005, 17: 2139-2141.[2]李朝霞, 赵世杰, 孟庆伟. 光呼吸途径及其功能[J]. 植物学通报, 2003, 20: 190-197.[3]武维华. 植物生理学[M]. 北京: 科学出版社, 2003: 117-176.[4]Wingler A, Lea P J, Quick W P, et al. Photorespiration: metabolic pathways and their role in stress protection[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 2000, 355: 1517-1529.[5]Igarashi D, Tsuchida H, Miyao M, et al. Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration[J]. Plant Physiology, 2006, 142: 901-910.[6]Coschigano K T, Melo-Oliveira R, Lim J, et al. Arabidopsisgls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation[J]. The Plant Cell, 1998, 10: 741-752.[7]Sharkey T D. Estimating the rate of photorespiration in leaves[J]. Physiologia Plantarum, 1988, 73: 147-152.[8]匡廷云.作物光能利用效率与调控[M]. 济南: 山东科学技术出版社, 2004: 1-28.[9]Zelitch I. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase[J]. Plant Physiology, 1966, 41: 1623-1631.[10]Osmond C B, Grace S C. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis[J]. Journal of Experimental Botany, 1995, 46: 1351-1362.[11]Somerville C R. An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration[J]. Plant Physiology, 2001, 125: 20-24.[12]王强, 温晓刚, 张其德. 光合作用光抑制的研究进展[J]. 植物学通报, 2003, 20: 539-548.[13]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta (BBA) Bioenergetics, 2007, 1767: 414-421.[14]Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384: 557-560.[15]Davison P A, Hunter C N, Horton P. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis[J]. Nature, 2002, 418: 203-206.[16]Nishiyama Y, Allakhverdiev S I, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757: 742-749.[17]Takahashi S, Bauwe H, Badger M. Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis[J]. Plant Physiology, 2007, 144: 487-494.[18]Anderson L E. Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases[J]. Biochimica et Biophysica Acta (BBA), 1971, 235: 237-244.[19]Kelly G J, Latzko E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate[J]. Federation of European Biochemical Societies, 1976, 68: 55-58.[20]Campbell W J, Ogren W L. Glyoxylate inhibition of ribulosebisphosphate carboxylase-oxygenase: Activation in intact, lysed and reconstituted chloroplasts[J]. Photosynthesis Research, 1990, 23: 257-268.[21]Allan W L, Clark S M, Hoover G J, et al. Role of plant glyoxylate reductases during stress: a hypothesis[J]. The Biochemical Journal, 2009, 423: 15-22.[22]Bauwe H, Hagemann M, Fernie A R. Photorespiration: players, partners and origin[J]. Trends in Plant Science, 2010, 15: 330-336.[23]Mouillon J M, Aubert S, Bourguignon J, et al. Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism[J]. The Plant Journal, 1999, 20: 197-205.[24]Engel N, Vanden K, Kolukisaoglu U, et al. Deletion of glycine decarboxylase in Arabidopsisis lethal under non-photorespiratory conditions[J]. Plant Physiology, 2007, 144: 1328-1335.[25]Novitskaya L, Trevanion S J, Driscoll S, et al. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis[J]. Plant, Cell & Environment, 2002, 25: 821-835.[26]Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status[J]. Current Opinion in Plant Biology, 2001, 4: 301-308.[27]Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance[J]. Trends in Genetics, 2000, 16: 449-455.[28]Neill S, Desikan R J. Hydrogen peroxide signaling[J]. Current Opinion in Plant Biology, 2002, 5: 388-395.[29]Kunkel B, Brooks D. Cross talk between signaling pathways in pathogen defense[J]. Current Opinion in Plant Biology, 2002, 5: 325-331.[30]Wu G, Shortt B J, Lawrence E B, et al. Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants[J]. Plant Physiology, 1997, 115: 427-435.[31]Michele C H. Hypersensitive response-related death[J]. Plant Molecular Biology, 2000, 44: 321-334.[32]贾学静, 董立花, 丁春邦, 等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报, 2013, 22(5):248-255.[33]俞乐, 刘拥海, 周丽萍, 等. 干旱胁迫下结缕草叶片抗坏血酸与相关生理指标变化的品种差异研究[J]. 草业学报, 2013, 22(4):106-115.[34]李智燕, 邢学峰, 唐华, 等. 铝和酸胁迫对苜蓿根瘤菌生长和抗氧化酶系的影响[J]. 草业学报, 2013, 22(3):146-153.[35]Taler D, Galperin M, Benjamin I, et al. Plant eR genes that encode photorespiratory enzymes confer resistance against disease[J]. The Plant Cell, 2004, 16: 172-184.[36]Juan M, Raquel M, Carmen C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress[J]. The Plant Journal, 2005, 41: 451-463.[37]刘昌平, 闵运江, 汪马成. 亚硫酸氢钠对蚕豆光合生产和蛋白含量的影响[J]. 中国林副特产, 2007, 6:8-11.[38]付伟伟, 席彦军, 黄重, 等. 光呼吸抑制剂对柑桔果实品质的影响[J]. 陕西农业科学, 2009, 55:86-87.[39]李颖畅, 马勇, 郝建军, 等. 提高作物光合作用途径的研究现状[J]. 长江蔬菜, 2009, 14:6-8.[40]Ku M, Cho D, Li X, et al. Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences[J]. Novartis Foundation Symposium, 2001, 236: 100-111.[41]Kebeish R, Niessen M, Thiruveedhi K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J]. Nature Biotechnology, 2007, 25: 593-599.[42]Hibberd J M, Sheehy J E, Langdale J A. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility[J]. Current Opinion in Plant Biology, 2008, 11: 228-231.[43]Renne P, Dressen U, Hebbeker U, et al. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2[J]. The Plant Journal, 2003, 35: 316-331.[44]Schwarte S, Bauwe H. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis[J]. Plant Physiology, 2007, 144: 1580-1586.[45]Foyer C H, Bloom A J, Queval G, et al. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling[J]. Annual Review of Plant Biology, 2009, 60: 455-484.[46]Somerville C R, Ogren W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7: 171-174.[47]Somerville C R, Ogren W L. Photorespiration-deficient mutants of Arabidopsis thaliana lacking mitochondrial serine transhydroxymethylase activity[J]. Plant Physiology, 1981, 67: 666-671.[48]Voll L M, Jamai A, Renne P, et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1[J]. Plant Physiology, 2006, 140: 59-66.[49]McHale N A, Havir E A, Zelitch I. A mutant of Nicotiana sylvestris deficient in serine glyoxylate aminotransferase activity. Callus induction and photorepiratory toxicity in regenerated plants[J]. Theoretical and Applied Genetics, 1988, 76: 71-75.[50]胥华伟, 姜敬哲, 彭新湘. 光呼吸突变体研究进展[J].植物学报, 2010, 45(4): 393-403.[51]Blackwell R D, Murray A J, Lea P J, et al. The value of mutants unable to carry out photorespiration[J]. Photosynthesis Research, 1988, 16: 155-176.[52]Zelitch I, Schultes N P, Peterson R B, et al. High glycolate oxidase activity is required for survival of maize in normal air[J]. Plant Physiology, 2008, 149: 195-204.[53]Jordan D B, Ogren W L. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase[J]. Planta, 1984, 161: 308-313.[54]Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions[J]. Plant, Cell & Environment, 2007, 30: 258-270.[55]Peterhansel C, Niessen M, Kebeish R M. Metabolic engineering towards the enhancement of photosynthesis[J]. Photochemistry and Photobiology, 2008, 84: 1317-1323. |
[1] | 任志国, 陈亚鹏,李卫红,刘树宝. 地下水埋深对塔里木河下游建群种植物叶片δ13C值的影响[J]. 草业学报, 2014, 23(2): 76-82. |
[2] | 祁娟,师尚礼,徐长林,闫伟红,张小娇. 4种披碱草属植物光合作用光响应特性的比较[J]. 草业学报, 2013, 22(6): 100-107. |
[3] | 李先婷,曹靖,魏晓娟,董利苹,代立兰. NaCl渐进胁迫对啤酒大麦幼苗生长、离子分配和光合特性的影响[J]. 草业学报, 2013, 22(6): 108-116. |
[4] | 张哲, 杨姝,杜桂娟,黄淑萍,马凤江. 遮阴对三种豆科牧草光合特性和叶绿素荧光参数的影响[J]. 草业学报, 2013, 22(5): 212-219. |
[5] | 王保林,王晶杰,杨勇,常书娟,陈喜梅,刘爱军. 植被光合有效辐射吸收分量及最大光能利用率算法的改进[J]. 草业学报, 2013, 22(5): 220-228. |
[6] | 梁志霞,杜虎,彭晚霞,曾馥平,杨钙仁,谭秋锦,宋同清. 氮肥、刈割强度对桂牧1号杂交象草光合特性的影响[J]. 草业学报, 2013, 22(4): 319-326. |
[7] | 张国斌,杨芳芳,郁继华. 6-BA预处理对低温弱光胁迫下辣椒幼苗光合特性和内源激素含量的影响[J]. 草业学报, 2013, 22(3): 177-. |
[8] | 李羿桥,李西,胡庭兴. 巨桉凋落叶分解对假俭草生长及光合特性的影响[J]. 草业学报, 2013, 22(3): 169-. |
[9] | 蔡仕珍,李西,潘远智,李璟,胡庭兴,叶充. 不同光照对蝴蝶花光合特性及生长发育研究[J]. 草业学报, 2013, 22(2): 264-272. |
[10] | 罗维成,曾凡江,刘波,张利刚,刘镇,宋聪,彭守兰,彭慧清. 绿洲-沙漠过渡带引种植物光合生理特征研究[J]. 草业学报, 2013, 22(2): 273-280. |
[11] | 朱成刚,李卫红,马建新,马晓东. 地上生物量负向扰动对干旱荒漠区补植沙拐枣幼株光化学过程的影响[J]. 草业学报, 2013, 22(2): 281-289. |
[12] | 种培芳,苏世平,高暝,李毅,孙兆成. 4个地理种源白刺气体交换特性比较[J]. 草业学报, 2013, 22(2): 307-312. |
[13] | 李兴,蒋进,宋春武,闵首军,张恒,姜有为. 保水剂对梭梭幼苗生长及根系形态的影响[J]. 草业学报, 2012, 21(6): 51-56. |
[14] | 崔秀妹,刘信宝,李志华,孙凯燕,李卉,张婷婷. 不同水分胁迫下水杨酸对分枝期扁蓿豆生长及光合生理的影响[J]. 草业学报, 2012, 21(6): 82-93. |
[15] | 苗福泓,郭雅婧,缪鹏飞,郭正刚,沈禹颖. 青藏高原东北边缘地区高寒草甸群落特征对封育的响应[J]. 草业学报, 2012, 21(3): 11-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||