[1] Yong T W, Yang W Y, Xiang D B, et al . Effect of wheat/maize/soybean and wheat/maize/sweet potato relay strip intercropping on bacterial community diversity of rhizoshpere soil and nitrogen uptake of crops. Acta Agronomica Sinica, 2012, 38(2): 333-343. [2] Peng X H, Zhang B, Zhao Q G. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 2004, 41(4): 6218-6231. [3] Ren Z J, Luo Y J, Wei C F. Progress in the study on field soil aggregate. Journal of Anhui Agricultural Sciences, 2011, 39(2): 1101-1105. [4] Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology & Biochemistry, 1996, 28(4/5): 665-676. [5] He S Q, Zheng Z C. Organic carbon change and distribution of soil aggregates under different land uses. Bulletin of Soil and Water Conservation, 2010, 30(1): 7-10. [6] Dou S, Li K, Guan S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418. [7] Song L P, Luo Z Z, Li L L, et al . Effect of lucerne-crop rotations on soil physical properties in the semi-arid Loess Plateau of Central Gansu. Acta Prataculturae Sinica, 2015, 24(7): 12-20. [8] Rilling M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 2002, 238(2): 325-333. [9] Chan K Y, Heenan D P. Microbial-induced soil aggregate stability under different crop rotations. Biology and Fertility of Soils, 1999, 30(1-2): 29-32. [10] Liu E K, Zhao B Q, Mei X R, et al . Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application. Acta Ecologica Sinica, 2010, 30(4): 1035-1041. [11] Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447-455. [12] Zhang S, Wang L C. Effect of conservation tillage on stability and content of organic carbon in soil aggregates. Journal of Soil and Water Conservation, 2013, 27(4): 263-267, 272. [13] Fang H J, Yang X M, Zhang X P, et al . Spatial distribution of particulate organic carbon and aggregate associated carbon in topsoil of sloping farmland in the Black Soil region, Northeast China. Acta Ecology Sinica, 2006, 26(9): 2847-2854. [14] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32: 2099-2013. [15] Zhou P, Pan G X, Li L Q, et al . SOC enhancement in major types of paddy soils in a long-term agro-ecosystem experiment in South China. Ⅴ. Relationship between carbon input and soil carbon sequestration. Scientia Agriculture Sinica, 2009, 42(12): 4260-4268. [16] Wang C J, Pan G X, Tian Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across mainland China. Journal of Agro-Environment Science, 2009, 28(12): 2464-2475. [17] Zheng J F, Cheng K, Pan G X, et al . Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China. Chinese Science Bull, 2011, 56(26): 2162-2173. [18] Zhang P, Jia Z K, Wang W, et al . Effects of straw returning on characteristics of soil aggregates in semi-arid areas in southern Ningnan of China. Scientia Agricultura Sinica, 2012, 45(8): 1513-1520. [19] Yan B, Jia Z K, Han Q F, et al . Effects of different tillage on soil aggregates in the arid areas of South Ningxia. Agricultural Research in the Arid Areas, 2010, 28(3): 58-63. [20] Zhang G S, Chan K Y, Li G D, et al . Long-term effects of tillage systems and rotation on selected soil properties in cropping zone of Southern NSW, Australia. Acta Ecologica Sinica, 2008, 28(6): 2722-2728. [21] Paul B K, Vanlauwe B, Ayuke F, et al . Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop production. Agriculture, Ecosystems and Environment, 2013, 164: 14-22. [22] Peng S, Guo T, Liu G C. The effects of arbuscular mycorrhizal hyphal netmorks on soil aggregates of purple soil in southwest China. Soil Biology and Biochemistry, 2013, 57: 411-417. [23] Song R, Liu L, Wu C S, et al . Effect of soybean root exudates on soil aggregate size and stability. Journal of Northeast Forestry University, 2009, 37(7): 84-86. [24] Pan G X, Li L Q, Zhang X H, et al . Soil organic carbon storage of China and the sequestration dynamics in agricultural lands. Advances in Earth Science, 2003, 18(4): 609-618. [25] Pan G X, Zhou P, Li L Q, et al . Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 2007, 44(2): 327-337. [26] Zotarelli L, Alves B J R, Urquiaga S, et al . Impact of tillage and crop rotation on light fraction and intra-aggregates soil organic matter in two Oxisols. Soil and Tillage Research, 2007, 95: 196-206. [27] Paulo C C, Jeferson D, Cimélio B. Combined role of no-tillage and cropping system in soil carbon stocks and stabilization. Soil and Tillage Research, 2013, 129: 40-47. [28] Zhou P, Song G H, Pan G X, et al . SOC accumulation in three major types of paddy soil under long-term agro-ecosystem experiments from South ChinaⅠ. Physical protection in soil micro-aggregates. Acta Pedologica Sinica, 2008, 45(6): 1063-1071. [1] 雍太文, 杨文钰, 向达兵, 等. 小麦/玉米/大豆和小麦/玉米/甘薯套作对根际土壤细菌群落多样性及植株氮素吸收的影响. 作物学报, 2012, 38(2): 333-343. [2] 彭新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展. 土壤学报, 2004, 41(4): 6218-6231. [3] 任镇江, 罗友进, 魏朝福. 农田土壤团聚体研究进展. 安徽农业科学, 2011, 39(2): 1101-1105. [5] 何淑勤, 郑子成. 不同土地利用方式下土壤团聚体的分布及其有机碳含量的变化. 水土保持通报, 2010, 30(1): 7-10. [6] 窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418. [7] 宋丽萍, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响. 草业学报, 2015, 24(7):12-20. [10] 刘恩科, 赵秉强, 梅旭荣, 等. 不同施肥处理对土壤水稳性团聚体及有机碳分布的影响. 生态学报, 2010, 30(4): 1035-1041. [11] 刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455. [12] 张赛, 王龙昌. 保护性耕作对土壤团聚体及其有机碳含量的影响. 水土保持学报, 2013, 27(4): 263-267, 272. [13] 方华军, 杨学明, 张晓平, 等. 东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布. 生态学报, 2006, 26(9): 2847-2854. [15] 周萍, 潘根兴, 李恋卿, 等. 南方典型水稻土长期试验下有机碳积累机制: 碳输入与土壤碳固定. 中国农业科学, 2009, 42(12): 4260-4268. [16] 王成己, 潘根兴, 田有国. 保护性耕作下农田表土有机碳含量变化特征分析. 农业环境科学学报, 2009, 28(12): 2464-2475. [17] 郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题. 科学通报, 2011, 56(26): 2162-2173. [18] 张鹏, 贾志宽, 王维, 等. 秸秆还田对宁南半干旱地区土壤团聚体特征的影响. 中国农业科学, 2012, 45(8): 1513-1520. [19] 严波, 贾志宽, 韩清芳, 等. 不同耕作方式对宁南旱地土壤团聚体的影响. 干旱地区农业研究, 2010, 28(3): 58-63. [20] 张国盛, Chan K Y, Li G D, 等. 长期保护性耕作方式对农田表层土壤性质的影响. 生态学报, 2008, 28(6): 2722-2728. [23] 宋日, 刘利, 吴春胜, 等. 大豆根系分泌物对土壤团聚体大小和稳定性的影响. 东北林业大学学报, 2009, 37(7): 84-86. [24] 潘根兴, 李恋卿, 张旭辉, 等. 中国土壤有机碳库量与农业土壤碳固定动态的若干问题. 地球科学进展, 2003, 18(4): 609- 618. [25] 潘根兴, 周萍, 李恋卿, 等. 固碳土壤学的核心科学问题与研究进展. 土壤学报, 2007, 44(2): 327-337. [28] 周萍, 宋国菡, 潘根兴, 等. 南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ. 团聚体物理保护作用. 土壤学报, 2008, 45(6): 1063-1071. |