[1] Hu N, Li H, Tang Z, et al . Community size, activity and C∶N stoichiometry of soil microorganisms following reforestation in a Karst region. European Journal of Soil Biology, 2016, 73: 77-83.
[2] Li Y, Li Q, Guo D, et al . Ecological stoichiometry homeostasis of Leymus chinensis in degraded grassland in western Jilin Province, NE China. Ecological Engineering, 2016, 90: 387-391.
[3] Wei Q W, Sardans J, Wang C, et al . Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology, 2015, 216(6): 1-14.
[4] Mi Z, Huang Y, Gan H, et al . Leaf P increase outpaces leaf N in an Inner Mongolia grassland over 27 years. Biology Letters, 2015, 1(14): 1-5.
[5] Villacorte L O, Ekowati Y, Neu T R, et al . Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae. Water Research, 2015, 73: 216-230.
[6] Li C J, Xu X W, Sun Y Q, et al . Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats. Arid Land Geography, 2014, 37(5): 996-1004.
[7] Li D F, Yu S L, Wang G X, et al . Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau. Chinese Journal of Plant Ecology, 2015, 39(5): 453-465.
[8] Yan Z, Kim N, Han W, et al . Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana . Plant and Soil, 2015, 388(1/2): 147-155.
[9] Piñeiro G, Paruelo J M, Oesterheld M, et al . Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2016, 63(63): 109-119.
[10] Carrillo Y, Ball B A, Molina M. Stoichiometric linkages between plant litter, trophic interactions and nitrogen mineralization across the litter-soil interface. Soil Biology & Biochemistry, 2016, 92: 102-110.
[11] Huang J Y, Lai R S, Yu H L, et al . Responses of plant and soil C∶N∶P stoichiometry to N addition in a desert steppe of Ningxia, Northwest China. Chinese Journal of Ecology, 2013, 32(11): 2850-2856.
[12] Luo M W, Mao L, Li Q Q, et al . C, N and P stoichiometry of plant and soil in the restorable plant communities distributed on the Land Used for Qinghai-Tibet Highway Construction in the Qinghai-Tibetan Plateau, China. Acta Ecologica Sinica, 2015, 35(23): 7832-7841.
[13] Xu S, Gong J R, Zhang Z Y, et al . The ecological stoichiometry of dominant species in different land uses type of grassland. Acta Prataculturae Sinica, 2014, 23(6): 45-53.
[14] Liu W D, Su J R, Li S F, et al . Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 2015, 39(1): 52-62.
[15] Qing Y, Sun F D, Li Y, et al . Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47.
[16] Yin X R, Liang C Z, Wang L X, et al . Ecological stoichiometry of plant nutrients at different restoration succession stages in typical steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(1): 39-47.
[17] Elser J J, Sterner R W, Gorokhova E, et al . Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3(6): 540-550.
[18] Liu L, Zhou X Y, Zhao L J, et al . Effect of nitrogen and phosphorus ratios on the growth of cyano-bacteria and chlorophyte. Journal of Shanghai Ocean University, 2014, 23(4): 573-581.
[19] Zheng W. Evaluation of mountain meadow ecosystem resilience based on plant diversity of Kanas Scenic Area. Acta Agrestia Sinica, 2012, 20(3): 393-400.
[20] Zheng W, Zhu J Z, Pan C D. Effect of tourism disturbance intensity on plant species diversity of meadow community in Kanasi Nature Reserve. Acta Agrestia Sinica, 2008, 16(6): 624-630.
[21] Zheng W, Zhu J Z, Pan C D. Effect of grazing disturbance on plant functional group and community structure of meadow community in Kanas Scenic Area. Chinese Journal of Grassland, 2010, 32(1): 92-98.
[22] Zheng W. Relationship between soil physical and chemical properties and plant diversity-productivity of upland meadow in Kanas Scnic Area. Pratacultural Science, 2013, 30(12): 1933-1943.
[23] Bao S D. Soil Analysis in Agricultural Chemistry[M]. Beijing: China Agriculture Press, 2000.
[24] Zhang W Y, Fan J W, Zhong H P, et al . The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 2010, 18(4): 503-509.
[25] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006.
[26] Ding X H, Luo S Z, Liu J W, et al . Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeirt. Acta Ecologica Sinica, 2012, 32(11): 3467-3476.
[27] Zhang T, Weng Y, Yao F J, et al . Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil. Acta Prataculturae Sinica, 2014, 23(2): 20-28.
[28] Wang W J, Li X Y, Wang H M, et al . Application of portable meter for measuring leaf nitrogen and chlorophyll content in the process of leaf autumn senescence. Scientia Silvae Sinicae, 2006, 42(6): 20-25.
[29] Xiao Y, Tao Y, Zhang Y M. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China. Chinese Journal of Plant Ecology, 2014, 38(9): 929-940.
[30] Yan B G, Liu G C, Fan B, et al . Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China. Chinese Journal of Plant Ecology, 2015, 39(8): 807-815.
[31] Lin L, Li Y K, Zhang F W, et al . Soil nitrogen and phosphorus stoichiometry in a degradation series of Kobresia humulis meadows in the Tibetan Plateau. Acta Ecologica Sinica, 2013, 33(17): 5245-5251.
[32] Luo Y Y, Zhang Y, Zhang J H, et al . Soil stoichiometry characteristics of alpine meadow at its different degradation stages.Chinese Journal of Ecology, 2012, 31(2): 254-260.
[33] Zeng Q C, Li X, Dong Y H, et al . Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau. Journal of Natural Resources, 2015, 30(5): 870-879.
[34] De K J, Zhang D G, Wang W, et al . Effects of fertilizers on the alpine meadow plant and soil N, P, K contents. Acta Agrestia Sinica, 2014, 22(2): 299-305.
[35] Tao Y, Zhang Y M. Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China. Chinese Journal of Applied Ecology, 2015, 26(3): 659-665.
[36] Zhang K, Chen Y L, Gao Y H, et al . Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region. Journal of Desert Research, 2014, 34(5): 1261-1267.
[37] Ding F, Lian P Y, Zeng D H, et al . Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soilnitrogen and phosphorus concentrations in Songnen Plain meadow. Chinese Journal of Ecology, 2011, 30(1): 77-81.
[38] Borer E T, Lind E M, Ogdahl E J, et al . Food-web composition and plant diversity control foliar nutrient content and stoichiometry. Journal of Ecology, 2015, 103(6): 1432-1441.
[39] He J S, Liang W, Dan F B F, et al . Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155(2): 301-310.
40 参考文献:
[6] 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征. 干旱区地理, 2014, 37(5): 996-1004.
[7] 李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 2015, 39(5): 453-465.
[11] 黄菊莹, 赖荣生, 余海龙, 等. N添加对宁夏荒漠草原植物和土壤C∶N∶P生态化学计量特征的影响. 生态学杂志, 2013, 32(11): 2850-2856.
[12] 雒明伟, 毛亮, 李倩倩, 等. 青藏高原筑路取土迹地恢复植物群落与土壤的碳氮磷化学计量特征. 生态学报, 2015, 35(23): 7832-7841.
[13] 徐沙, 龚吉蕊, 张梓榆, 等. 不同利用方式下草地优势植物的生态化学计量特征. 草业学报, 2014, 23(6): 45-53.
[14] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 2015, 39(1): 52-62.
[15] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47.
[16] 银晓瑞, 梁存柱, 王立新, 等. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学. 植物生态学报, 2010, 34(1): 39-47.
[18] 刘莲, 周小玉, 赵良杰, 等. 氮磷比率对两种蓝藻和两种绿藻生长的影响. 上海海洋大学学报, 2014, 23(4): 573-581.
[19] 郑伟. 基于植物多样性的喀纳斯景区山地草甸生态系统恢复力评价. 草地学报, 2012, 20(3): 393-400.
[20] 郑伟, 朱进忠, 潘存德. 旅游干扰对喀纳斯景区草地植物多样性的影响. 草地学报, 2008, 16(6): 624-630.
[21] 郑伟, 朱进忠, 潘存德. 放牧干扰对喀纳斯草地植物功能群及群落结构的影响. 中国草地学报, 2010, 32(1): 92-98.
[22] 郑伟. 喀纳斯景区山地草甸土壤理化性质与植物多样性-生产力关系. 草业科学, 2013, 30(12): 1933-1943.
[23] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[24] 张文彦, 樊江文, 钟华平, 等. 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草地学报, 2010, 18(4): 503-509.
[26] 丁小慧, 罗淑政, 刘金巍, 等. 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 2012, 32(11): 3467-3476.
[27] 张婷, 翁月, 姚凤娇, 等. 放牧强度对草甸植物小叶章及土壤化学计量比的影响. 草业学报, 2014, 23(2): 20-28.
[28] 王文杰, 李雪莹, 王慧梅, 等. 便携式测定仪在测定叶片衰老过程中氮和叶绿素含量上的应用. 林业科学, 2006, 42(6): 20-25.
[29] 肖遥, 陶冶, 张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征. 植物生态学报, 2014, 38(9): 929-940.
[30] 闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系. 植物生态学报, 2015, 39(8): 807-815.
[31] 林丽, 李以康, 张法伟, 等. 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征. 生态学报, 2013, 33(17): 5245-5251.
[32] 罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 2012, 31(2): 254-260.
[33] 曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征. 自然资源学报, 2015, 30(5): 870-879.
[34] 德科加, 张德罡, 王伟, 等. 施肥对高寒草甸植物及土壤N, P, K的影响. 草地学报, 2014, 22(2): 299-305.
[35] 陶冶, 张元明. 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征. 应用生态学报, 2015, 26(3): 659-665.
[36] 张珂, 陈永乐, 高艳红, 等. 阿拉善荒漠典型植物功能群氮、磷化学计量特征. 中国沙漠, 2014, 34(5): 1261-1267.
[37] 丁凡, 廉培勇, 曾德慧, 等. 松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系. 生态学杂志, 2011, 30(1): 77-81. |