[1] Potter C S, Randerson J T, Field C B, et al . Terrestrial ecosystem production: a process model-based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-841. [2] Yuan W P, Liu S, Zhou G S, et al . Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 2007, 143(3-4): 189-207. [3] Wu C Y, Chen J M, Desai A R, et al . Remote sensing of canopy light use efficiency in temperate and boreal forests of North America using MODIS imagery. Remote Sensing of Environment, 2012, 118: 60-72. [4] Wu C Y, Niu Z, Gao S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland. Ecological Indicators, 2012, 14(1): 66-73. [5] Yang M X, Nelson F E, Shiklomanov N I, et al . Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 2010, 103(1-2): 31-44. [6] Xie H, Ye J S, Liu X M, et al . Warming and drying trends on the Tibetan Plateau (1971-2005). Theoretical and Applied Climatology, 2010, 101(3-4): 241-253. [7] Shen Z, Fu G, Yu C, et al . Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau. Remote Sensing, 2014, 6(8): 6765-6789. [8] Fu G, Shen Z X, Sun W, et al . A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation, 2015, 34(1): 57-65. [9] Zhang X Z, Shen Z X, Fu G. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 2015, 87: 32-38. [10] Yao T D, Xie Z C, Wu X L, et al . Climate change since little ice age recorded by Dunde ice cap. Science in China Series B, 1991, 34: 760-767. [11] Hu L, Wang C T, Wang G X, et al . Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers,China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. [12] Bai E, Li S L, Xu W H, et al . A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013, 199(2): 441-451. [13] Lu M, Zhou X H, Yang Q, et al . Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 2013, 94(3): 726-738. [14] Fu G, Shen Z, Zhang X, et al . Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2012, 61(SI): 158-160. [15] Fu G, Shen Z, Zhang X, et al . Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau. European Journal of Soil Biology, 2012, 52: 27-29. [16] Shen Z X, Li Y L, Fu G. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet. Applied Soil Ecology, 2015, 90: 35-40. [17] Fu G, Shen Z, Zhang X, et al . Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau. Canadian Journal of Remote Sensing, 2012, 38(2): 157-168. [18] Fu G, Shen Z X, Zhang X Z, et al . Modelling light use efficiency of alpine meadow on the Northern Tibetan Plateau based on the MODIS algorithm. Acta Prataculturae Sinica, 2012, 21(1): 239-247. [19] Fu G, Zhang X, Zhang Y, et al . Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet. Journal of Applied Remote Sensing, 2013, 7(1): doi:10. 1117/1. jrs. 7. 073505. [20] Marion G M, Henry G H R, Freckman D W, et al . Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 1997, 3: 20-32. [21] Debevec E M, Maclean S F. Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic and Alpine Research, 1993, 25(1): 56-62. [22] Lendzion J, Leuschner C. Temperate forest herbs are adapted to high air humidity - evidence from climate chamber and humidity manipulation experiments in the field. Canadian Journal of Forest Research, 2009, 39(12): 2332-2342. [23] Fu G, Zhou Y T, Shen Z X, et al . Satellite-based modelling light use efficiency of alpine meadow along an altitudinal gradient. Acta Ecologica Sinica, 2011, 31(23): 6989-6998. [24] Fu G, Shen Z X, Zhang X Z, et al . Modeling light use efficiency of an alpine meadow on Northern Tibetan Plateau using evaporative fraction and air temperature. Journal of Natural Resources, 2012, 27(3): 450-459. [25] Shen H H, Klein J A, Zhao X Q, et al . Leaf photosynthesis and simulated carbon budget of Gentiana straminea from a decade-long warming experiment. Journal of Plant Ecology-Uk, 2009, 2(4): 207-216. [26] Yu Z, Wang G X, Wang Y B. Response of biomass spatial pattern of alpine vegetation to climate change in permafrost region of the Qinghai-Tibet Plateau, China. Journal of Mountain Science, 2010, 7(4): 301-314. [27] Klein J A, Harte J, Zhao X Q. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 2007, 17(2): 541-557. [28] De Boeck H J, Lemmens C, Vicca S, et al . How do climate warming and species richness affect CO 2 fluxes in experimental grasslands. New Phytologist, 2007, 175(3): 512-522. [29] Almeida A C, Landsberg J L. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil. Agricultural and Forest Meteorology, 2003, 118(3-4): 237-250. [30] Li S G, Asanuma J, Eugster W, et al . Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 2005, 11(11): 1941-1955. [31] Day M E. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce ( Picea rubens ). Tree Physiology, 2000, 20(1): 57-63. [32] Hirasawa T, Hsiao T C. Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crops Research, 1999, 62(1): 53-62. [33] Fu Y, Zheng Z, Yu G, et al . Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences, 2009, 6(12): 2879-2893. [34] Reichstein M, Ciais P, Papale D, et al . Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 2007, 13(3): 634-651. [11] 胡雷, 王长庭, 王根绪, 等. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. [18] 付刚, 沈振西, 张宪洲, 等. 基于MODIS算法的藏北高寒草甸的光能利用效率模拟. 草业学报, 2012, 21(1): 239-247. [23] 付刚, 周宇庭, 沈振西, 等. 不同海拔高度高寒草甸光能利用效率的遥感模拟. 生态学报, 2011, 31(23): 6989-6998. [24] 付刚, 沈振西, 张宪洲, 等. 利用蒸散比和气温模拟藏北高寒草甸的光能利用效率. 自然资源学报, 2012, 27(3): 450-459. |