[1] Bragg O M. Hydrology of peat-forming wetlands in Scotland. The Science of the Total Environment, 2002, 294(1/3): 111-129. [2] Ma1tby E, Immirzi P. Carbon dynamics in peatlands and other wetland soils: regional and global perspectives. Chemosphere, 1993, 27(6): 999-1023. [3] Gao J Q, Xu X L, Zhang F, et al . Distribution characteristics of soil labile carbon along water table gradient of alpine wetland soils. Journal of Soil and Water Conservation, 2008, 22(3): 126-131. [4] Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. Journal of Glaciology and Geocryology, 2002, 24(6): 694-698. [5] He Y X, Wu N, Zhu Q A, et al . The 5000-year climate change of northeastern Qinghai-Tibetan Plateau and historical ecology of Zoige wetlands. Acta Ecologica Sinica, 2014, 34(7): 1615-1625. [6] Xiong Y Q, Wu P F, Zhang H Z, et al . Dynamics of soil water conservation during the degradation process of the Zoigê Alpine Wetland. Acta Ecologica Sinica, 2011, 31(19): 5780-5788. [7] Gao Y H, Zeng X Y, Xie Q Y, et al . Release of carbon and nitrogen from alpine soils during thawing periods in the eastern Qinghai-Tibet Plateau. Water, Air & Soil Pollution, 2015, 226: 209. [8] Freeman C, Lock M A, Reynolds B. Fluxes of CO 2 , CH 4 and N 2 O from a Welsh peatland following simulation of water table drawdown: potential feedback to climatic change. Biogeochemistry, 1993, 19(1): 51-60. [9] Gao J Q, Ouyang H, Zhang F, et al . The response of soil nitrogen mineralization to soil temperature and soil moisture in Zoige Alpine Wetland. Wetland Science, 2008, 6(2): 229-234. [10] Muhr J, Hhle J, Otieno D O, et al . Manipulative lowering of the water table during summer does not affect CO 2 emissions and uptake in a fen in Germany. Ecological Applications, 2011, 21(2): 391-401. [11] Dinsmore K J, Skiba U M, Billett M F, et al . Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant and Soil, 2009, 318(1/2): 229-242. [12] Chimner R A, Cooper D J. Influence of water table levels on CO 2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biology & Biochemistry, 2003, 35(3): 345-351. [13] Ou Q, Wang J T, Zhou J H, et al . Comparison of soil CO 2 flux among different water levels in coastal wetlands. Chinese Journal of Applied & Environmental Biology, 2014, 20(6): 992-998. [14] Qing Y, Sun F D, Li Y, et al . Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47. [15] Wan Z M. Effects of water level on CO 2 and CH 4 flux and soil microbial activity in Calamagrostis angustifolia marsh. Ecology and Environment Sciences, 2013, 22(3): 465-468. [16] Wang H, Yu L F, Chen L T, et al . Responses of soil respiration to reduced water table and nitrogen addition in an alpine wet-land on the Qinghai-Xizang Plateau.Chinese Journal of Plant Ecology, 2014, 38(6): 619-625. [17] Bubier J L, Juggins S. Predicting methane emission from bryophyte distribution in northern Canadian peatlands. Ecology, 1995, 76(3): 677-693. [18] Hogg E H. Decay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised bog. Oikos, 1993, 66(2): 269-278. [19] Li Y C, Song C C, Liu D Y. Advances in studies of N 2 O emission in wetland soils. Wetland Science, 2008, 6(2): 124-129. [20] Liu H M, Cao L H, Ma H P. Diurnal dynamics of soil respiration and response to atmospheric temperature, humidity in Linzhi farmland. Journal of Soil and Water Conservation, 2013, 27(1): 193-202. [21] Makiranta P, Laiho R, Fritze H, et al . Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology &Biochemistry, 2009, 41(4): 695-703. [22] Schtltz H, Holzapfel P A, Conrad R, et al . A 3-year continuous record on the influence of day time, season and fertilizer treatment on methane emission rate from an Italian rice paddy. Journal of Geophysical Research, 1989, 94(13): 16406-16416. [23] Wang W D, Xie X L, Shangguan X J, et al . Regulation rate of CH 4 production in red soil hilly region of South China. Rural Ecological Environment, 1995, 11(3): 11-14. [24] Jiang C M, Yu G R, Fang H J, et al . Short-term effect of increasing nitrogen deposition on CO 2 , CH 4 and N 2 O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment, 2009, 44(24): 2920-2926. [25] Ma W W, Wang H, Li G, et al . A preliminary study of carbon dioxide, methane and nitrous oxide fluxes fluxes from the Gahai wetland. Acta Prataculturae Sinica, 2015, 24(8): 1-10. [26] Groffman P M, Brumme R, Butterbach B K, et al . Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles, 2000, 14(4): 1061-1070. [3] 高俊琴, 徐兴良, 张锋, 等. 水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响. 水土保持学报, 2008, 22(3): 126-131. [4] 王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, 24(6): 694-698. [5] 何奕忻, 吴宁, 朱求安, 等. 青藏高原东北部5000年来气候变化与若尔盖湿地历史生态学研究进展. 生态学报, 2014, 34(7): 1615-1625. [6] 熊远清, 吴鹏飞, 张洪芝, 等. 若尔盖湿地退化过程中土壤水源涵养功能. 生态学报, 2011, 31(19): 5780-5788. [9] 高俊琴, 欧阳华, 张锋, 等. 若尔盖高寒湿地土壤氮矿化对温度和湿度的响应. 湿地科学, 2008, 6(2): 229-234. [13] 欧强, 王江涛, 周剑虹, 等. 滨海湿地不同水位梯度下的土壤CO 2 通量比较. 应用与环境生物学报, 2014, 20(6): 992-998. [14] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47. [15] 万忠梅. 水位对小叶章湿地CO 2 , CH 4 排放及土壤微生物活性的影响. 生态环境学报, 2013, 22(3): 465-468. [16] 汪浩, 于凌飞, 陈立同, 等. 青藏高原海北高寒湿地土壤呼吸对水位降低和氮添加的响应. 植物生态学报, 2014, 38(6): 619-625. [19] 李英臣, 宋长春, 刘德燕. 湿地土壤N 2 O排放研究进展. 湿地科学, 2008, 6(2): 124-129. [20] 刘合满, 曹丽花, 马和平. 土壤呼吸日动态特征及其与大气温度, 湿度的响应. 水土保持学报, 2013, 27(1): 193-202. [23] 王卫东, 谢小立, 上官行健, 等. 我国南方红壤丘岗区稻田CH 4 产生规率. 农村生态环境, 1995, 11(3): 11-14. [25] 马维伟, 王辉, 李广, 等. 尕海湿地CH 4 , CO 2 和N 2 O通量特征初步研究. 草业学报, 2015, 24(8): 1-10. |