[1] Shi Y H, Wang L Q, Liu J N, et al . Semi-lethal high temperature and heat tolerance of twelve varieties of Lolium perenne . Pratacultural Science, 2010, 27(2): 104-108. [2] Lan J, Zhang L X. Research on the growth and development characteristics in turf-type perennial ryegrass. Pratacultural Science, 2003, 5: 43-45. [3] Xu S C, Ding H D, Lu R, et al . Study on effects of ABA in antioxidant defense of plant cells. Journal of China Agricultural University, 2008, 13(2): 11-19. [4] Qiang X, Henry R L, Guikema J A, et al . Association of high-temperature injury with increased sensitivity of photosynthesis to abscisic acid in wheat. Environmental and Experimental Botany, 1995, 35: 441-454. [5] Alamillo J M, Bartels D. Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum . Plant Science, 2001, 160(6): 1161-1170. [6] Li X M, Chen Q, Wang L L, et al . Effects of abscisic acid on photosynthesis and antioxidant enzymes in wheat seedling. Journal of Shenyang Normal University, 2006, (2): 221-223. [7] Guo Y F, Gan S S. Genetic manipulation of leaf senescence[C]//Gan S. Senescence Processes in Plants. Oxford, UK: Blackwell Publishing, 2007: 304-322. [8] Morvan-Bertrand A, Boucaud J, Le Saos J, et al . Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta, 2001, 213(1): 109-120. [9] Wang H B, Cui S M, Wang M X, et al . Effects of high temperature on greenhouse cucumber photosynthetic efficiency under CO 2 enrichment. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2007, 28(2): 114-118. [10] Huynh B L, Mather D E, Schreiber A W, et al . Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Molecular Biology, 2012, 80: 299-314. [11] Li Y, Xu Q G, Xie H W. Research on the productivity and heat tolerance evaluation in perennial ryegrass. Crop Research, 2011, 25(3): 277-280. [12] Hu G S, Huang C Q, Li X. Test of dry, heat and low temperature resistance of lawn grass. Journal of Central South Forestry University, 1999, 19(1): 39-43. [13] Duan B H, Han B P, Wang Q. Study on the heat tolerance of three cool-season turfgrasses. Journal of Beijing Agricultural College, 2006, 21(3): 46-48. [14] Zhang J M, Xie X M, Dong Z X. An evaluation on the heat tolerance of cool-season turf grasses under field heat stress. Pratacultural Science, 2007, 24(2): 105-109. [15] Liu Y M, Sun Y C, Shao X L. Chlorophyll and enzymes in ryegrass ( Lolium perenne L.) seedlings under temperature and NaCl stress. Journal of Agro-Environment Science, 2008, 27(1): 111-115. [16] Liu D L, Zhang H, Hu K Q, et al . Variations of physiological and biochemical characteristics under high temperature stress in perennial ryegrass. Acta Agrestia Sinica, 2013, 21(1): 142-146. [17] Soliman W S, Fujimori M, Tase K, et al . Oxidative stress and physiological damage under prolonged heat stress in C 3 grass Lolium perenne . Grassland Science, 2011, 57(2): 101-106. [18] Wang L Q, Shi Y H, Li X L, et al . Alterations in leaf cellular ultra-structure of three varieties of Lolium perenne subjected to high temperature and soil drought stress. Acta Prataculturae Sinica, 2009, 18(1): 25-31. [19] Hiscox T D, Israelstam G F. A method for the extraction of chlorophyll from leaf tissues without maceration. Canadian Journal of Botany, 1979, 57(12): 1332-1334. [20] Ma Y N. Quantitative analysis of 37 Phytohormones in Oryza sativa by High-performance Liquid Chromatography-mass Spectrometry[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. [21] Vereyken I J, Chupin V, Demel R A, et al . Fructans insert between the head groups of phospholipids. Biochimica et Biophysica Acta, 2001, 1510: 307-320. [22] Wang Z W. Temporal variation of water-soluble carbohydrate in the rhizome clonal grass Leymus chinese in response to defoliation. Journal of Ecology, 2007, 31(4): 673-679. [23] He Y L, Cao W X, Liu Y L, et al . Reviews on the heat tolerance of cool-season turfgrasses. Acta Prataculturae Sinica, 2000, 9(2): 58-63. [24] Chu M, Zhuang Z Q, Wang X F, et al . Study on physiological response to high temperature stress in different heat tolerance radish seedlings. Journal of Shandong Agricultural University (Natural Science Edition), 2014, 45(3): 334-339. [25] Xiong Z M, Cai H, Feng W X, et al . Effects of PP333 on heat tolerance of Lolium perenne under high temperature stress. Journal of Yangzhou University (Agricultural and Life Science Edition), 2006, 27(4): 98-100, 103. [26] Wang X. Damages of high temperature on turfgrass. Pratacultural Science, 1993, 10(4): 66-68. [27] Liu X Z, Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 2000, 40: 503-510. [28] Jia K Z, Chen G L. Tolerance of different eggplant varieties at seedling stage to high temperature stress. Chinese Journal of Ecology, 2005, 24(4): 398-401. [29] Ran M L, Song M, Song H, et al . Study on the identification technique system of heat tolerance for radish. Chinese Agricultural Science Bulletin, 2006, 22(11): 248-252. [30] Lu S Y, Guo Z F. Physiological responses of turfgrass to abiotic stresses. Acta Prataculturae Sinica, 2003, 12(4): 7-13. [31] Xu W G, Hu L, Gai J Y, et al . Study on the heat tolerance in wheat. Acta Agriculturae Boreall-Sinica, 1999, 14(2): 20-24. [32] Chen X C, Wang S M, Zhu Q S, et al . Correlation analysis between high temperature resistance and pertinent biochemical indexes among different rice varieties. Journal of Agro-Environment Science, 2010, 29(9): 1633-1639. [33] Sinsawat V, Leipner J, Stamp P, et al . Effect of heat stress on the photosynthetic apparatus in maize ( Zea mays L.) grown at control or high temperature. Environmental and Experimental Botany, 2004, 52: 123-129. [34] Xu Q Z, Huang B R. Lowering soil temperatures improves creeping bentgrass growth under heat stress. Crop Science, 2001, 41: 1878-1883. [35] Teng Z H, Zhi L, Lu J, et al . Effects of high temperature on photosynthesis characteristics, phytohormones and grain quality during filling-periods in rice. Acta Ecologica Sinica, 2010, 30(23): 6504-6511. [36] Jiang Y W, Huang B R. Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass. Hortscience, 2001, 36(4): 682-686. [37] Chen P Q, Yu S L, Zhan Y N, et al . A review on plant heat stress physiology. Chinese Agricultural Science Bulletin, 2006, 22(5): 223-227. [38] Hu Y H, Jiang C H, Qin J, et al . Study on the morphological and physiological index in Chinese Rose. Seed, 2008, 27(7): 26-31. [39] Pan B G, Wang S B, Liu J B, et al . Effect of heat stress on photosynthesis of pepper cultivars at seedling stage. Jiangsu Journal of Agricultural Science, 2006, 22(2): 137-140. [40] Zhang Y, He Y, Zhu Z J. Studies on seedling heat tolerance of different eggplant ( Solanum melongena L.) varieties. China Vegetables, 2009, (24): 30-35. [41] Fu J H, Sun X H, Wang J d, et al . Research progress on the quantification of phytohormones. Science Bulletin, 2010, (33): 3163-3176. [42] Wang F, Cheng F M, Liu Y, et al . Dynamic changes of plant hormones in developing grains at rice filling stage under different temperatures. Acta Agronomica Sinica, 2006, 32(1): 25-29. [43] Hare P D, Cress W A, Staden J V, et al . The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regulation, 1997, 23(1-2): 1-2. [44] Wang S G. Roles of cytokinin on stress-resistance and delaying senescence in plants. Chinese Bulletin of Botany, 2000, 17(2): 121-126. [45] Patton A J, Cunningham S M, Yolenec J J, et al . Differences in freeze tolerance of zoysia grasses: II. Carbohydrate and proline accumulation. Crop Science, 2007, 47: 2170-2181. [46] Xu Q Z, Huang B R. Effects of differential air and soil temperature on carbonhydrate metabolism in creeping bentgrass. Crop Science, 2000, 40: 1368-1374. [47] Huang J W, Chen D M, Zheng H Y, et al . Physiological response of warm-season turfgrass to high temperature stress. Chinese Journal of Eco-Agriculture, 2009, 17(5): 964-967. [48] Xia Y H, Cui S M, Liu J C, et al . The effects of elevated CO 2 on the content of carbohydrate and starch to high temperature. Journal of Inner Mongolia Agricultural University, 2013, 34(4): 16-20. [49] Zhang G L, Zhang S T, Xiao L T, et al . Physiological responses of anther to high temperature stress in rices. Plant Physiology Journal, 2013, 49(9): 923-928. [50] Zhang H Y, Dong S T, Gao R Q. Research progress in plant starch. Journal of the Chinese Cereals and Oils, 2006, 21(6): 41-46. [51] Xu H H, Kan J, Liang M X. Research advances in the metabolism of fructan in plant stress resistance. Chinese Bulletin of Botany, 2014, 49(2): 209-220. [52] Parvanova D, Ivanov S, Konstantinova T, et al . Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiology and Biochemistry, 2004, 42(1): 57-63. [53] Hincha D K, Hellwege E M, Heyer A G, et al . Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. European Journal of Biochemistry, 2000, 267: 535-540. [1] 石永红, 万里强, 刘建宁, 等. 多年生黑麦草高温半致死温度与耐热性研究. 草业科学, 2010, 27(2): 104-108. [2] 兰剑, 张丽霞. 草坪型多年生黑麦草主要生长发育特性的研究. 草业科学, 2003, 20(5): 43-45. [3] 许树成, 丁海东, 鲁锐, 等. ABA在植物细胞抗氧化防护过程中的作用. 中国农业大学学报, 2008, 13(2): 11-19. [6] 李雪梅, 陈强, 王兰兰, 等. 脱落酸对小麦幼苗光合及抗氧化酶的影响. 沈阳师范大学学报, 2006, (2): 221-223. [9] 王红彬, 崔世茂, 王明喜, 等. CO 2 施肥条件下高温对温室黄瓜光合性能的影响. 内蒙古农业大学学报, 2007, 28(2): 114-118. [11] 李阳, 徐庆国, 谢宏伟. 黑麦草生产能力及其抗热性评价.作物研究, 2011, 25(3): 277-280. [12] 胡果生, 黄承前, 李轩. 草坪草耐干热低温性能研究.中南林学院学报, 1999, 19(1): 39-43. [13] 段碧华, 韩宝平, 王倩. 3种冷季型草坪草的耐热性研究初探. 北京农学院学报, 2006, 21(3): 46-48. [14] 张巨明, 解新明, 董朝霞. 高温胁迫下冷季型草坪草的耐热性评价. 草业科学, 2007, 24(2): 105-109. [15] 刘月敏, 孙贻超, 邵晓龙. NaCl和温度双重胁迫对黑麦草幼苗叶绿素及相关酶活性的影响研究. 农业环境科学学报, 2008, 27(1): 111-115. [16] 刘大林, 张华, 胡楷崎, 等. 多年生黑麦草在高温胁迫下生理生化特性的变化. 草地学报, 2013, 21(1): 142-146. [18] 万里强, 石永红, 李向林, 等. 高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化. 草业学报, 2009, 18(1): 25-31. [20] 马有宁. 液相串联质谱测定水稻37种内源激素方法的研究[D]. 北京: 中国农业科学院, 2011. [22] 王正文. 根茎克隆植物羊草体内可溶性碳水化合物的时间变异及其对去叶干扰的响应. 植物生态学报, 2007, 31(4): 673-679. [23] 何亚丽, 曹卫星, 刘友良, 等. 冷季型草坪草耐热性研究综述. 草业学报, 2000, 9(2): 58-63. [24] 初敏, 庄志群, 王秀峰, 等. 不同耐热性萝卜幼苗对高温胁迫的生理响应. 山东农业大学学报(自然科学版), 2014, 45(3): 334-339. [25] 熊作明, 蔡汉, 冯文祥, 等. 高温胁迫下多效唑对多年生黑麦草耐热性的影响. 扬州大学学报(农业与生命科学版), 2006: 27(4): 98-100, 103. [26] 王钦. 高温对草坪草细胞的伤害. 草业科学, 1993, 10(4): 66-68. [28] 贾开志, 陈贵林.高温胁迫下不同茄子品种幼苗耐热性研究.生态学杂志, 2005, 24(4): 398-401. [29] 冉茂林, 宋明, 宋华, 等. 萝卜耐热性鉴定技术体系研究.中国农学通报, 2006, 22(11): 248-252. [30] 卢少云, 郭振飞. 草坪草逆境生理研究进展. 草业学报, 2003, 12(4): 7-13. [31] 许为钢, 胡琳, 盖钧镒, 等. 小麦耐热性研究. 华北农学报, 1999, 14(2): 20-24. [32] 陈秀晨, 王士梅, 朱启升, 等. 水稻品种耐热性与相关生化指标的关联分析. 农业环境科学学报, 2010, 29(9): 1633-1639. [35] 滕中华, 智丽, 吕俊, 等. 灌浆期高温对水稻光合特性、内源激素和稻米品质的影响. 生态学报, 2010, 30(23): 6504-6511. [37] 陈培琴, 郁松林, 詹妍妮, 等. 植物在高温胁迫下的生理研究进展. 中国农学通报, 2006, 22(5): 223-227. [38] 胡永红, 蒋昌华, 秦俊, 等. 高温对月季部分形态、生理指标的影响研究. 种子, 2008, 27(7): 26-31. [39] 潘宝贵, 王述彬, 刘金兵, 等. 高温胁迫对不同辣椒品种苗期光合作用的影响. 江苏农业学报, 2006, 22(2): 137-140. [40] 张雅, 何勇, 朱祝军. 不同茄子品种幼苗耐热性研究. 中国蔬菜, 2009, (24): 30-35. [41] 符继红, 孙晓红, 王吉德, 等. 植物激素定量分析方法研究进展. 科学通报, 2010, (33): 3163-3176. [42] 王丰, 程方民, 刘奕, 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化. 作物学报, 2006, 32(1): 25-29. [44] 王三根. 细胞分裂素在植物抗逆和延衰中的作用. 植物学通报, 2000, 17(2): 121-126. [47] 黄锦文, 陈冬梅, 郑红艳, 等. 暖季型草坪草对高温胁迫的生理响应. 中国生态农业学报, 2009, 17(5): 964-967. [48] 夏永恒, 崔世茂, 刘杰才, 等. CO 2 加富条件下高温对温室黄瓜可溶性糖和淀粉含量的影响. 内蒙古农业大学学报, 2013, 34(4): 16-20. [49] 张桂莲, 张顺堂, 萧浪涛, 等. 水稻花药对高温胁迫的生理响应. 植物生理学报, 2013, 49(9): 923-928. [50] 张海艳, 董树亭, 高荣岐. 植物淀粉研究进展. 中国粮油学报, 2006, 21(6): 41-46. [51] 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展. 植物学报, 2014, 49(2): 209-220. |