[1] Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 2005, 85(4): 221-268. [2] Yu W T, Ma Q, Zhao X, et al . Changes of soil active organic carbon pool under different land use types. Chinese Journal of Ecology, 2007, 26(12): 2013-2016. [3] Coleman D C, Reid C P P, Cole C V. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research, 1983, 13: 1-55. [4] Six J, Elliott E T, Paustian K, et al . Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. [5] Mayer W B, Turner B L. Changes in Land Use and Land Cover: a Global Perspective[M]. Cambridge, UK: Cambridge University Press, 1994: 97-124. [6] Pu N N. Influence of Grazing Intensity on the Soil Organic Carbon Fractions and the Carbon, Nitrogen Characteristic of Meadow Steppe in Zhaosu[D]. Urumchi: Xinjiang Agriculture University, 2013. [7] Yang H L, Sun Z J, Fan Y M, et al . Effects of short period grazing on soil active organic carbon fraction in Zhaosu meadow steppe. Pratacultural Science, 2013, 30(12): 1926-1932. [8] Saggar S, Yeates G W, Shepherd T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand. Soil Tillage Research, 2001, 58(1): 55-68. [9] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149. [10] Yang X G, Song N P, Li X B, et al . Effects of short-term fencing on organic carbon fractions and physical stability of sandy sierozem in desert steppe of Northwest China. Chinese Journal of Applied Ecology, 2012, 23(12): 3325-3330. [11] Guan G Y, Fan Y M, Wu H Q, et al . Effects of fencing on soil active organic carbon and carbon pool management meadow steppe. Pratacultural Science, 2014, 31(9): 1618-1622. [12] Lu R K. Soil Agricultural Chemical Analysis Methods[M]. Beijing: China Agricultural Science and Technology Press, 2000: 109-110. [13] Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen(DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38(5): 991-999. [14] Liu H M, Yang Z X, Liu S Q. Methods for determining labile orange matter in different sized soil particles of different soils. Ecology and Environment, 2008, 17(5): 2046-2049. [15] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measure soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. [16] Geng Y B, Luo G Q, Yuan G F, et al . Effects of cultivating and grazing on soil organic carbon and soil inorganic carbon in temperate semiarid grassland. Journal of Agro-Environment Science, 2008, 27(6): 2518-2523. [17] Merino A N, Pérez-Batallón P, MacíAs F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry, 2004, 36(6): 917-925. [18] Li C L, Zhao M L, Han G D, et al . The characteristics of sil organic carbon and the relationships between soil organic carbon and vegetations in desert steppe under different grazing gradients. Journal of Arid Land Resources and Environment, 2008, 22(5): 134-138. [19] Amula, Zhao M L, Han G D, et al . Influences of grazing intensity on carbon and nitrogen contents in desert steppe. Chinese Journal of Grassland, 2011, 33(3): 115-118. [20] Cheng F R, Cheng J M, Liu W, et al . Effects of disturbances on organic soil carbon in the typical grassland of Loess Plateau. Acta Agrestia Sinica, 2012, 20(2): 298-304, 311. [21] Wang Q L, Wang C T, Du Y G, et al . Grazing impact on soil microbial biomass carbon and relationships with soil environment in alpine Kobresia meadow. Acta Prataculturae Sinica, 2008, 17(2): 39-46. [22] Li L H. Effects of land-use change on soil carbon storage in grassland ecosystems. Acta Phytoecologica Sinica, 1998, 22(4): 300-302. [23] Li X. Effects of Enclosure Management on Soil Organic Carbon and Aggregate Stability of Desert-steppe in Ningxia[D]. Yinchuan: Ningxia University, 2014. [24] Wang W, Yang Y S, Chen G S, et al . Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China. Chinese Journal of Ecology, 2008, 27(6): 924-928. [25] Zhao N, Zhuang Y, Zhao J. Effects of grassland managements on soil organic carbon and microbial biomass carbon. Pratacultural Science, 2014, 31(3): 367-374. [26] Zhou X Q, Chen C R, Wu H W, et al . Dynamics of soil extractable carbon and nitrogen under different cover cropresidues. Soils Sediment, 2012, 12(6): 844-853. [27] Biederbeck V O, Janzen H H, Campbell C A, et al . Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology & Biochemistry, 1994, 26(12): 1656-1674. [28] Wu J, Joergensen R G, Pommerening B, et al . Measurement of soil microbial biomass by fumigation-extraction-an automated Procedure. Soil Biology & Biochemistry, 1990, 22(8): 1167-1169. [29] Powlson D S, Brook S P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology & Biochemistry, 1987, 19(2): 159-164. [30] Hu H Q, Lu X, Sun L. Research review on soil active organic carbon fractionation and analytical methods. Forest Engineering, 2012, 17(5): 18-22. [31] Wang C T, Long R J, Wang Q L, et al . Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the headwater region of three rivers in China. Chinese Journal of Applied and Environment Biology, 2008, 14(2): 225-230. [32] Li X Z, Qu Q H. Soil microbial biomass carbon and nitrogen in mongolian grassland. Acta Pedologica Sinica, 2002, 39(1): 91-98. [33] Wu Y S, Ma W L, Li H, et al . Seasonal variations of soil organic carbon and microbial biomass carbon in degraded desert steppes of Inner Mongolia. Chinese Journal of Applied Ecology, 2010, 21(2): 312-316. [34] Cao S B, Liu Q W, Wang L Q, et al . Effect of short-term grazing on soil microorganisms and soil enzyme activities in meadow steppe. Microbiology China, 2012, 39(6): 741-748. [35] Gu X J, Zhao J, Wang J. Soil microbial biomass of typical grassland in Inner Mongolia. Journal of Agro-Environment Science, 2007, 26(4): 1444-1448. [36] Salinas-Garcia J R, Hons F M, Matocha J E, et al . Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization. Biology and Fertility of Soils, 1997, 25(2): 182-188. [37] Garten C T, Post W M, Hanson P J, et al . Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry, 1999, 45(2): 115-145. [2] 宇万太, 马强, 赵鑫, 等. 不同土地利用类型下土壤活性有机碳库的变化. 生态学杂志, 2007, 26(12): 2013-2016. [6] 蒲宁宁. 放牧强度对昭苏草甸草原土壤有机碳组分及其碳、氮特征的影响[D]. 乌鲁木齐: 新疆农业大学, 2013. [7] 杨合龙, 孙宗玖, 范燕敏, 等. 短期放牧对昭苏草甸草原土壤活性有机碳组分的影响. 草业科学, 2013, 30(12): 1926-1932. [10] 杨新国, 宋乃平, 李学斌, 等. 短期围栏封育对荒漠草原沙化灰钙土有机碳组分及物理稳定性的影响. 应用生态学报, 2012, 23(12): 3325-3330. [11] 管光玉, 范燕敏, 武红旗, 等. 封育对山地草甸草原土壤活性有机碳及碳库管理指数的影响. 草业科学, 2014, 31(9): 1618-1622. [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 109-110. [14] 刘合明, 杨志新, 刘树庆. 不同粒径土壤活性有机碳测定方法的探讨. 生态环境, 2008, 17(5): 2046-2049. [16] 耿元波, 罗光强, 袁国富, 等. 农垦及放牧对温带半干旱草原土壤碳素的影响. 农业环境科学学报, 2008, 27(6): 2518-2523. [18] 李春莉, 赵萌莉, 韩国栋, 等. 不同放牧压力下荒漠草原土壤有机碳特征及其与植被之间关系的研究. 干旱区资源与环境, 2008, 22(5): 134-138. [19] 阿穆拉, 赵萌莉, 韩国栋, 等. 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响. 中国草地学报, 2011, 33(3): 115-118. [20] 陈芙蓉, 程积民, 刘伟, 等. 不同干扰对黄土高原典型草原土壤有机碳的影响. 草地学报, 2012, 20(2): 298-304, 311. [21] 王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系. 草业学报, 2008, 17(2): 39-46. [22] 李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响. 植物生态学报, 1998, 22(4): 300-302. [23] 李侠. 封育对宁夏荒漠草原土壤有机碳及团聚体稳定性的影响[D]. 银川: 宁夏大学, 2014. [24] 汪伟, 杨玉盛, 陈光水, 等. 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志, 2008, 27(6): 924-928. [25] 赵娜, 庄洋, 赵吉. 放牧和补播对草地土壤有机碳和微生物量碳的影响. 草业科学, 2014, 31(3): 367-374. [30] 胡海清, 陆昕, 孙龙. 土壤活性有机碳分组及测定方法. 森林工程, 2012, 17(5): 18-22. [31] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230. [32] 李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 91-98. [33] 吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化. 应用生态学报, 2010, 21(2): 312-316. [34] 曹淑宝, 刘全伟, 王立群, 等. 短期放牧对草甸草原土壤微生物与土壤酶活性的影响. 微生物学通报, 2012, 39(6): 741-748. [35] 谷雪景, 赵吉, 王娟. 内蒙古典型草原土壤微生物生物量研究. 农业环境科学学报, 2007, 26(4): 1444-1448. |