[1] Zhang J K. Make full use of straw resources to vigorously develop the cattle and sheep industry. Ningbo Agricultural Science and Technology, 2003, (3): 16-18. [2] Zhang J K, Bao S N, Zou Q H. In vitro dry matter digestibility of mixtures of rice straw and several feeds. Pratacultural Science, 2010, 27(11): 137-144. [3] Bu T L. In vitro Gas Test to Evaluate Associative Effects Between Corn Silage, Chinese Wild Hay and Alfalfa[D]. Hangzhou: Zhejiang University, 2006. [4] Blaxter K L. The Energy Metabolism of Ruminants[M]. London: Hutchinson, 1965. [5] Liu J X, Susenbeth A, Südekum K H. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. Journal of Animal Science, 2002, 80(2): 517-524. [6] Zhang J K, Liu J X. Use of in vitro gas production to evaluate associative effects on gas production of rice straw supplemented with alfalfa. Journal of Animal Science, 2007, 16(2): 156-160. [7] Zhang J K, Liu J X. Comprehensive evaluation of associative effects of supplementing corn straws with alfalfa hay. Feed Review, 2007, (3): 5-10. [8] Caton J S, Dhuyvetter D V. Influence of energy supplementation on grazing ruminants: requirements and responses. Journal of Animal Science, 1997, 75(2): 533-542. [9] Tan Z L, Lu D X. Improve the utilization efficiency of roughage system combination of nutrition technology and the research progress of composite effect. Feed Review, 1999, (7): 6-10. [10] Yu T F, Zhang J J, Sun G Q. Associative effects of peanut vine and four kinds of roughages. Chinese Journal of Animal Nutrition, 2012, 24(7): 1246-1254. [11] Zhang J K. Study on Modelling of Forage Grading Index Parameters and Associative Effects in Mixed Forages[D]. Hohhot: Inner Mongolia Agriculture University, 2005. [12] Zhao G Y, Lebzien P. Development of an in vitro incubation technique for the estimation of the utilizable crude protein (uCP) in feeds for cattle. Archives of Animal Nutrition, 2000, 53(3): 293-302. [13] Duan Z Y. Study of Associative Effects between Starch and Neutral Detergent Fiber in Ruminants[D]. Hangzhou: Zhejiang University, 2006. [14] Yuan C L, Wang L H, Yu Z Y, et al . Study on combined effect of corn stalk with roughages. Chinese Journal of Animal Science, 2014, 15: 50-53. [15] Su H Y. Study on Associative Effects Between Mulberry Leaves ( Morus alba ) and Qil-seed Meals in Ruminants[D]. Hangzhou: Zhejiang University, 2002. [16] Sun X Z. Energy Value Evaluation and Associative Effects of Forages for Sheep[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2007. [17] Sun G Q, Lv Y Y, Zhang J J. A study on the associative effect of whole corn silage-peanut vine and Leymus chinensis by rumen fermentation in vitro . Acta Prataculturae Sinica, 2014, 23(3): 224-231. [18] Lei D Z, Jin S G, Wu R T N. Evaluation of the associative effects of different forage and same concentration by gas production method in vitro . Feed Industry, 2009, 30(3): 30-33. [19] Liu L, Jing Z Z. The nutritional value of rice bran and its application in livestock and poultry production. Feed China, 2010, 11: 44-45. [20] William H. Official methods of analysis of AOAC international. USA, AOAC International Suite, 2000, 500: 481. [21] Van Soest P J, Robertson J B, Lowis B A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74: 3583-3597. [22] Menke K H, Raab L, Salewski A, et al . The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro . The Journal of Agricultural Science, 1979, 93(1): 217-222. [23] Schofield P, Pitt R E, Pell A N. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 1994, 72(11): 2980-2991. [24] Cao Q Y, Zhou W Y, Zhu G Z, et al . Gas chromatography method of determination of volatile fatty acids in rumen liquor. China Feed, 2006, 24: 26-28. [25] Tang Y G, Long R J, Bi Y F. The application of in vitro gas production technique for assessment nutritive value of feeds of grass-feeding livestock. Grass-Feeding Livestock, 2003, (2): 47-49. [26] Prasad Cadaba S, Wood Christopher D, Sampath Koratikere T. Use of in vitro gas production to evaluate rumen fermentation of untreated and urea treated finger millet straw ( Eleusine coracana ) supplemented with different levels of concentrate. Journal of the Science of Food and Agriculture, 1994, 65(4): 457-464. [27] Zhang G J, Luo H L, Zhang Y J, et al . Evaluation of white clover’s nutrition value by in vitro gas production and in vitro digestibility. Journal of China Agricultural University, 2010, 15(2): 53-58. [28] Guo Y J, Long R J, Zhang D G, et al . Determination of dry matter degradation of feeding shrubs and forages by gas production method. Acta Prataculturae Sinica, 2003, 12(2): 54-60. [29] Sampath K T, Wood C D, Prasad C S. Effect of urea and by-products on the in-vitro fermentation of untreated and urea treated finger millet ( Eleusine coracana ) straw. Journal of the Science of Food and Agriculture, 1995, 67(3): 323-328. [30] Tang S X, Jiang H L, Zhou C S, et al . Combinative effects of different forage species on in vitro fermentation characteristics. Acta Prataculturae Sinica, 2006, 15(1): 68-75. [31] Diao B. Evaluation on Combined Effects of Cool-season Supplementary Feeding on Yak, Forage and Pastures in Yushu Region of Qinghai in vitro Gas Production Technique[D]. Xining: Qinghai University, 2013. [32] Zhang P F. Effect of Ration of Structural and Nonstructural Carbohydrates in Diets on Fatty Acid Profiles in Milk Fat from Lactating Ewe[D]. Shihezi: Shihezi University, 2008. [33] Peng D Y. Effect of Different Quality Roughage Combination on Rumen in vitro Fermentation Parameters, Production Performance and Biochemical Parameters of Dairy Cows in Summer[D]. Ya’an: Sichuan Agricultural University, 2010. [34] Li J N. Degradability of Potato Residues and Sweet Potato Residues Silage in Rumen and Study on Their Associative Effect with Corn Silage[D]. Baoding: Hebei Agricultural University, 2014. [35] Zhang J K, Zou Q H, Zhong X J. Using in vitro technique to evaluate associative effects of supplementing enting rice straw with dwarf elephant grass comprehensively. Chinese Journal of Animal Science, 2008, 44(21): 38-41. [36] Zhang J K, Liu J X. Comprehensive evaluation of associative effects of supplementing based cow rice straws with alfalfa hay. China Dairy Cattle, 2007, (7): 13-16. [37] Zhang C J, Liu Z, Hao Z L, et al . Effect of complete pellet diets with different straws on parameters of rumen metabolism in sheep. Pratacultural Science, 2008, 25(1): 82-86. [38] Yang F L, Ding X Z, Shi H S, et al . Study on in vitro fermentation characteristics of alfalfa hay mixed with straw and their combined utilization. Pratacultural Science, 2008, 25(3): 61-66. [39] Jiang X M, Qi Z L, Qi D S, et al . Effects of diets differing in protein sources on rumen fermentation and protein digestion. Pratacultural Science, 2009, 26(1): 74-80. [40] Van Gylswyk N O. The effect of supplementing a low-protein hay on the cellulolytic bacteria in the rumen of sheep and on the digestibility of cellulose and hemicellulose. Journal of Agricultural Science, 1970, 74: 169. [41] Hemsey J A, Moir R J. The influence of high volatile fatty acids on the intake of urea-supplemented low quality cereal hay by sheep. Australian Journal of Agricultural Research, 1963, 14: 509. [42] Hume I D. Synthesis of microbial protein in the rumenⅡ.A response to higher volatile fatty acids. Australian Journal of Agricultural Research, 1970, 21: 297. [43] Bentley O G, Johnson R R, Hershberger T V, et al . Cellulolytic factor activity of certain short-chain fatty acids for rumen microorganisms in vitro . Journal of Nutrition, 1955, 57: 389. [44] Satter L D, Suttie J W, Raumgardt B R. Dietary induced changes in volatile fatty acid formation from α-cellulose-C 14 and hemicellulose-C 14 . Journal of Dairy Science, 1964, 47(12): 1365-1370. [45] Lu D X, Xie C W. Modern Ruminant Research Methods and Techniques[M]. Beijing: Agricultural Press, 1991. [46] Cui Z H, Hao L Z, Liu S J, et al . Evaluation of the fermentation characteristics of mixed oat green hay and native pastures in the Qinghai Plateau using an in vitro gas production technique. Acta Prataculturae Sinica, 2012, 21(3): 250-257. [47] Diao B, Cui Z H, Zhang X W, et al . Evaluation of the fermentation characteristics of mixed wheat straw and native pastures in the Qinghai Plateau using an in vitro gas production technique. China Feed, 2013, (8): 10-14. [1] 张吉鹍. 充分利用秸秆资源大力发展牛羊产业. 宁波农业科技, 2003, (3): 16-18. [2] 张吉鹍, 包赛娜, 邹庆华. 稻草与不同饲料混合在体外消化率上的组合效应研究. 草业科学, 2010, 27(11): 137-144. [3] 布同良. 体外产气法评定青贮玉米、羊草和苜蓿草之间的组合效应[D]. 杭州: 浙江大学, 2006. [7] 张吉鹍, 刘建新. 玉米秸秆与苜蓿之间组合效应的综合评定研究. 饲料博览, 2007, (3): 5-10. [9] 谭支良, 卢德勋. 提高粗饲料利用效率的系统组合营养技术及其组合效应的研究进展. 饲料博览, 1999, (7): 6-10. [10] 于腾飞, 张杰杰, 孙国强. 花生蔓与4种粗饲料间组合效应的研究. 动物营养学报, 2012, 24(7): 1246-1254. [11] 张吉鹍. 粗饲料分级指数参数的模型化及粗饲料科学搭配的组合效应研究[D]. 呼和浩特: 内蒙古农业大学, 2005. [13] 段智勇. 反刍动物日粮中淀粉与纤维的组合效应及其机理的研究[D]. 杭州: 浙江大学, 2006. [14] 袁翠林, 王利华, 于子洋, 等. 青贮玉米秸与4种羊常用粗饲料间的组合效应研究. 中国畜牧杂志, 2014, 15: 50-53. [15] 苏海涯. 反刍动物日粮中桑叶与饼粕类饲料间组合效应的研究[D]. 杭州: 浙江大学, 2002. [16] 孙献忠. 羊常用饲草的能量价值评定及其组合效应研究[D]. 北京: 中国农业科学院, 2007. [17] 孙国强, 吕永艳, 张杰杰. 利用体外瘤胃发酵法研究全株玉米青贮与花生蔓和羊草间的组合效应. 草业学报, 2014, 23(3): 224-231. [18] 雷冬至, 金曙光, 乌仁塔娜. 用体外产气法评价不同粗饲料与相同精料间的组合效应. 饲料工业, 2009, 30(3): 30-33. [19] 刘丽, 井铸忠. 米糠粕的营养价值及其在畜禽生产中的应用. 饲料广角, 2010, 11: 44-45. [24] 曹庆云, 周武艺, 朱贵钊, 等. 气相色谱测定羊瘤胃液中挥发性脂肪酸方法研究. 中国饲料, 2006, 24: 26-28. [25] 唐一国, 龙瑞军, 毕玉芬. 体外产气法在评定草食家畜饲料营养价值上的应用. 草食家畜, 2003, (2): 47-49. [27] 张桂杰, 罗海玲, 张英俊, 等. 应用体外产气与活体外消化率法评定盛花期白三叶牧草营养价值. 中国农业大学学报, 2010, 15(2): 53-58. [28] 郭彦军, 龙瑞军, 张德罡, 等. 利用体外产气法测定高山牧草和灌木的干物质降解率. 草业学报, 2003, 12(2): 54-60. [30] 汤少勋, 姜海林, 周传社, 等. 不同品种牧草间组合时体外产气发酵特性研究. 草业学报, 2006, 15(1): 68-75. [31] 刁波. 体外产气法评价牦牛冷季补饲草料与玉树地区天然牧草的组合效应[D]. 西宁: 青海大学, 2013. [32] 张鹏飞. 不同结构和非结构性碳水化合物日粮对泌乳母羊乳脂肪酸组成的影响[D]. 石河子: 石河子大学, 2008. [33] 彭点懿. 不同品质粗饲料组合对体外发酵参数、夏季奶牛生产性能及血液生化指标的影响[D]. 雅安: 四川农业大学, 2010. [34] 李剑楠. 薯渣青贮的瘤胃降解规律及其与玉米青贮的组合效应研究[D]. 保定: 河北农业大学, 2014. [35] 张吉鹍, 邹庆华, 钟小军. 稻草添补矮象草体外发酵组合效应的综合评定研究. 中国畜牧杂志, 2008, 44(21): 38-41. [36] 张吉鹍, 刘建新. 反刍动物稻草基础日粮补饲苜蓿组合效应的综合评定研究. 中国奶牛, 2007, (7): 13-16. [37] 张昌吉, 刘哲, 郝正里, 等. 含不同秸秆的全饲粮颗粒料对绵羊瘤胃代谢参数的影响. 草业科学, 2008, 25(1): 82-86. [38] 阳伏林, 丁学智, 史海山, 等. 苜蓿干草和秸秆组合体外发酵营养特性及其利用研究. 草业科学, 2008, 25(3): 61-66. [39] 姜旭明, 齐智利, 齐德生, 等. 不同蛋白质来源的日粮对瘤胃发酵特性及蛋白质消化的影响. 草业科学, 2009, 26(1): 74-80. [45] 卢德勋, 谢崇文. 现代反刍动物研究方法和技术[M]. 北京: 农业出版社, 1991. [46] 崔占鸿, 郝力壮, 刘书杰, 等. 体外产气法评价青海高原燕麦青干草与天然牧草组合效应. 草业学报, 2012, 21(3): 250-257. [47] 刁波, 崔占鸿, 张晓卫, 等. 体外产气法评价青海高原小麦秸秆与天然牧草组合效应. 中国饲料, 2013, (8): 10-14. |