[1] Crutzen P J, Heidt L E, Krasnec J P, et al . Biomass burning as a source of atmospheric gases CO, H 2 , N 2 O, NO, CH 3 Cl and COS. Nature, 1979, 282: 253-256. [2] Levine J S. Global biomass burning: atmospheric, climatic and biospheres’ implications. Atmospheric Climatic & Biospheric Implications, 1991, 71(37): 1075-1077. [3] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 2001, 15(4): 955-966. [4] Penner J E, Zhang S, Ito A. Estimates of Black Carbon Emissions from Open Biomass Burning[C]. London: American Geophysical Union Fall Meeting, 2004. [5] Van D W G R, Randerson J T, Giglio L, et al . Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry & Physics Discussions, 2006, 6(2): 3175-3226. [6] Balezentiene L, Uzupis A, Mednis M. Fuzzy TOPSIS method applied for evaluation of mitigation strategies for greenhouse gas emissions from abandoned grassland. Applied Information and Communication Technologies, 2012, 75(3): 242-249. [7] Sinha P, Hobbs P V, Yokelson R J, et al . Emissions of trace gases and particles from savanna fires in southern Africa: Safari 2000-Southern African regional science initiative. Journal of Geophysical Research, 2003, 108(D13): 315-323. [8] Cheng Z L, Lam K S, Chan L Y, et al . Chemical characteristics of aerosols at coastal station in Hong Kong. II. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996. Atmospheric Environment, 2000, 34(17): 2771-2783. [9] Ma W, Yang Y, He J, et al . Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science China Life Sciences, 2008, 51(3): 263-270. [10] Andreae M O, Atlas E, Cachier H, et al . Trace gas and aerosol emissions from savanna fires. Atmospheric Chemistry & Physics, 1996, 33(3): 271-280. [11] Iii W R C, Levine J S, Winstead E L, et al . Source compositions of trace gases released during African savanna fires. Journal of Geophysical Research Atmospheres, 1996, 101(D19): 23597-23602. [12] Burling I R, Yokelson R J, Griffith D W T, et al . Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry & Physics, 2010, 10(22): 11115-11130. [13] Fernandes A P, Alves C A, Gonçalves C, et al . Emission factors from residential combustion appliances burning Portuguese biomass fuels. Journal of Environmental Monitoring, 2011, 13(11): 3196-3206. [14] Levine J. Influence of Biomass Burning Emissions on Precipitation Chemistry in the Equatorial Forests of Africa[M]. London: Massachusetts Institute of Technology Press, 1991: 167-173. [15] Yokelson R J, Bertschi I T, Christian T J, et al . Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research, 2003, 108(13): 267-289. [16] Lee B S, Alexander M E, Hawkes B C, et al . Information systems in support of wildland fire management decision making in Canada. Computers & Electronics in Agriculture, 2002, 37(1): 185-198. [17] Matthews S. A comparison of fire danger rating systems for use in forests. Australian Meteorological & Oceanographic Journal, 2009, 58(1): 41-48. [18] Liu X P, Zhang J Q, Tong Z J. Modeling the early warning of grassland fire risk based on fuzzy logic in Xilingol, Inner Mongolia. Natural Hazards, 2015, 75(75): 2331-2342. [19] Zhang J Q, Zhang H, Tong Z J, et al . Loss assessment and grade partition of grassland fire disaster in Northern China. Acta Prataculturae Sinica, 2007, 16(6): 121-128. 张继权, 张会, 佟志军, 等. 中国北方草原火灾灾情评价及等级划分. 草业学报, 2007, 16(6): 121-128. [20] Li X H, Wu W J, Zhang C, et al . Influence of climate change on north-eastern of Inner Mongolia grassland forest fire. Journal of Arid Land Resources & Environment, 2011, 25(11): 114-119. [21] Zhou H L, Wang Y H, Zhou G S. Temporal and spatial dynamics of grassland fires in Inner Mongolia. Acta Prataculturae Sinica, 2016, 25(4): 16-26. 周怀林, 王玉辉, 周广胜. 内蒙古草原火的时空动态特征研究. 草业学报, 2016, 25(4): 16-25. [22] Li N, Bao Y L, Yin S, et al . Spatiotemporal characteristics of grassland fire in China mongolia border regions. Journal of Catastrophology, 2016, 31(3): 207-210. 丽娜, 包玉龙, 银山, 等. 中蒙边境地区草原火时空分布特征分析. 灾害学, 2016, 31(3): 207-210. [23] Qu Y P, Zheng S X, Bai Y F. Spatiotemporal patterns and driving factors of grassland fire on Mongolian Plateau. Chinese Journal of Applied Ecology, 2010, 21(4): 807-813. 曲熠鹏, 郑淑霞, 白永飞. 蒙古高原草原火行为的时空格局与影响因子. 应用生态学报, 2010, 21(4): 807-813. [24] Zhang Z X, Zhang H Y, Li D X, et al . Spatial distribution pattern of human-caused fires in Hulunbeir grassland. Acta Ecologica Sinica, 2013, 33(7): 2023-2031. 张正祥, 张洪岩, 李冬雪, 等. 呼伦贝尔草原人为火空间分布格局. 生态学报, 2013, 33(7): 2023-2031. [25] Feng Z, Bao Y L, Pao Y H, et al . Analysis of spatial and temporal characteristics of fire behavior in Inner Mongolia grassland[C]. Hohhot: Risk analysis and information technology in crisis response, 2014. 峰芝, 包玉龙, 泡玉海, 等. 内蒙古牧区草原火行为时空特征分析[C]. 呼和浩特: 风险分析和危机反应中的信息技术, 2014. [26] Yearbook Editorial Board China. Animal Husbandry Livestock Yearbook[M]. Beijing: China Agriculture Press, 2006-2015. 中国畜牧业年鉴编辑委员会. 中国畜牧业年鉴[M]. 北京: 中国农业出版社, 2006-2015. [27] Amraoui M, Pereira M G, Dacamara C C, et al . Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Science of the Total Environment, 2015, 524: 32-39. [28] Zhou X C, Wang X Q. Validate and improvement on arithmetic of identifying forest fire based on EOS-MODIS data. Remote Sensing Technology & Application, 2006, 21(3): 206-211. 周小成, 汪小钦. EOS-MODIS数据林火识别算法的验证和改进. 遥感技术与应用, 2006, 21(3): 206-211. [29] Chen X Q, Zheng T. Spatial patterns of aboveground gicmass and its climatie attributions in typical steppe of Inner Mongolia. Scientia Geographica Snica, 2008, 28(3): 369-374. 陈效逑, 郑婷. 内蒙古典型草原地上生物量的空间格局及其气候成因分析. 地理科学, 2008, 28(3): 369-374. [30] Kato E, Kawamiya M, Kinoshita T, et al . Development of spatially explicit emission scenario from land-use change and biomass burning for the input data of climate projection. Procedia Environmental Sciences, 2011, 6(1): 146-152. [31] Seiler W, Crutzen P J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 1980, 2(3): 207-247. [32] Urbanski S. Wildland fire emissions, carbon, and climate: Emission factors. Forest Ecology & Management, 2014, 317(2): 51-60. [33] Liu Y, Goodrick S, Heilman W. Wildland fire emissions, carbon, and climate: Wildfire-climate interactions. Forest Ecology & Management, 2014, 317(2): 80-96. [34] Lu B, Kong S F, Han B, et al . Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007. China Environmental Science, 2011, 31(2): 186-194. 陆炳, 孔少飞, 韩斌, 等. 2007年中国大陆地区生物质燃烧排放污染物清单. 中国环境科学, 2011, 31(2): 186-194. [35] Zhang H B, Tang H J, Yang G X, et al . Changes of spatial-temporal characteristics based on MODIS NDVI data in Inner Mongolia grassland from 2000 to 2008. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 168-175. 张宏斌, 唐华俊, 杨桂霞, 等. 2000-2008年内蒙古草原MODIS NDVI时空特征变化. 农业工程学报, 2009, 25(9): 168-175. [36] Zhang X Y, Hu Y F, Zhuang D F, et al . The spatial pattern and differentiation of NDVI in Mongolia Plateau. Geographical Research, 2009, 28(1): 10-18. 张雪艳, 胡云锋, 庄大方, 等. 蒙古高原NDVI的空间格局及空间分异. 地理研究, 2009, 28(1): 10-18. [37] Guo F T, Wang G Y, Su Z W, et al . What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland Fire, 2016, 25: 505-519. [38] Guo F T, Su Z W, Wang G Y, et al . Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography, 2016, 66: 12-21. [39] Yan X, Ohara T, Akimoto H. Bottom-up estimate of biomass burning in mainland China. Atmospheric Environment, 2006, 40(27): 5262-5273. [40] Hernandez-Leal P A, Arbelo M, Gonzalez-Calvo A. Fire risk assessment using satellite data. Advances in Space Research, 2006, 37(4): 741-746. [41] Venkataraman C, Joshi P, Sethi V, et al . Aerosol and carbon monoxide emissions from low-temperature combustion in a sawdust packed-bed stove. Aerosol Science & Technology, 2004, 3(1): 50-61. [42] Jaiswal R K, Mukherjee S, Raju K D, et al . Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation & Geoinformation, 2002, 4(1): 1-10. |