[1] Franceschi V R, Nakata P A. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology, 2005, 56: 41-71. [2] Volk G M, Goss L J, Franceschi V R. Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Annals of Botany, 2004, 93: 741-753. [3] Ström L, Owen A G, Godbold D L, et al . Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biology and Biochemistry, 2002, 34: 703-710. [4] López-Bucio J, Nieto-Jacobo M F, Ramrez-Rodrguez V, et al . Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, 2000, 160: 1-13. [5] Ma Y, Guo L Q, Zhang S F, et al . Solutes accumulation and distribution traits of an alkali resistant forage plant Kochia sieversiana and physiological contribution of organic acid under salt and alkali stresses. Acta Prataculturae Sinica, 2013, 22(1):193-200. 麻莹, 郭立泉, 张淑芳, 等. 盐碱胁迫下抗碱牧草碱地肤溶质积累、分布特点及有机酸的生理贡献. 草业学报, 2013, 22(1): 193-200. [6] Yang J L, Zheng S J, He Y F, et al . Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant Cell Environment, 2006, 29: 240-246. [7] Yang H, Yang Z M, Zhou L X, et al . Ability of Agrogyron elongatum to accumulate the single metal cadmium, copper, nickel and lead and root exudation of organic acids. Journal of Environmental Sciences, 2001, 13: 368-375. [8] Ma Y, Guo L Q, Wang H X, et al . Accumulation, distribution, and physiological contribution of oxalic acid and other solutes in an alkali-resistant forage plant, Kochia sieversiana , during adaptation to saline and alkaline conditions. Journal of Plant Nutrition and Soil Science, 2011, 174(4): 655-663. [9] Zhai Y J, Feng X H, Kang Y G, et al . Pharmacognostical identification of fructus Kochia sieversiana . Journal Chinese Materia Medica, 1996, 19(6): 283-285. 翟延君, 冯夏红, 康延国, 等. 碱地肤的生药鉴定. 中药材, 1996, 19(6): 283-285. [10] Peng B, Xu W, Shao R, et al . Growth of Suaeda salsa tin response to salt stress in different habitats. Acta Prataculturae Sinica, 2016, 25(4): 81-90. 彭斌, 许伟, 邵荣, 等. 不同生境种源盐地碱蓬幼苗生长发育对盐分胁迫的响应和适应. 草业学报, 2016, 25(4): 81-90. [11] Xiao G Z, Teng K, Li L J, et al . Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress. Acta Prataculturae Sinica, 2016, 25(9): 74-82. 肖国增, 滕珂, 李林洁, 等. 盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究. 草业学报, 2016, 25(9): 74-82. [12] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na 2 CO 3 ) stresses on Puccinellia tenuiflora (griseb.) scribn. et merr. plants. Acta Botanica Sinica, 1993, 35(2): 144-149. 石德成, 殷立娟. 盐(NaCl)与碱(Na 2 CO 3 )对星星草胁迫作用的差异. 植物学报, 1993, 35(2): 144-149. [13] GB/T5009.86-2003, Determination of Total Ascorbic Acid in Fruits, Vegetables and Derived Products (Fluorometric method and Colorimetric Method)[S]. Beijing: China Standards Press, 2004. GB/T5009.86-2003, 蔬菜、水果及其制品中总抗坏血酸的测定(荧光法和2, 4-二硝基苯肼法)[S]. 北京: 中国标准出版社, 2004. [14] Booker F L, Reid C D, Brunschon Harti S, et al . Photosynthesis and photorespiration in soybean [ Glycine max (L.) Merr.] chronically exposed to elevated carbon dioxide and ozone. Journal of Experimental Botany, 1997, 48: 1843-1852. [15] Yang Z M, Yang H, Wang J, et al . Aluminum regulation of citrate metabolism for Al-induced citrate efflux in the roots of Cassia tora L. Plant Science, 2004, 166: 1589-1594. [16] Brock M, Darley D, Textor S, et al . 2-methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans : characterization and comparison of both enzymes. European Journal of Biochemistry, 2001, 268: 3577-3586. [17] Thakur M, Goyal L, Pundir C S. Discrete analysis of plasma oxalate with alkylamine glass bound sorghum oxalate oxidase and horseradish peroxidase. Journal of Biochemical and Biophysical Methods, 2000, 44: 77-88. [18] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254. [19] Shi D C, Yin S J, Yang G H, et al . Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica, 2002, 44: 537-540. [20] Alhendawi R A, Römheld V, Kirby E A, et al . Influence of increasing bicarbonate concentration on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum and maize. Plant Nutrition, 1997, 20: 1731-1753. [21] Shao H B, Liu Z, Zhang Z B, et al . Biological roles of crop NADP-malic enzymes and molecular mechanisms involved in abioticstress. African Journal of Biotechnology, 2011, 10(25): 4947-4953. [22] Guo L Q, Shi D C, Wang D L. The key physiological response to alkali stress by the alkali-resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2009, 196: 123-135. [23] Lv J Q, Li C Y, Yang C W, et al . Effect of natural saline soil on organic acid accumulation in the stem and leaf of Chloris virgata and analysis of stress factors. Acta Prataculturae Sinica, 2015, 24(4): 95-103. 吕家强, 李长有, 杨春武, 等. 天然盐碱土壤对虎尾草茎叶有机酸积累影响及胁迫因子分析. 草业学报, 2015, 24(4): 95-103. [24] Libert B, Franceschi V R. Oxalate in crop plants. Journal of Agricultural and Food Chemistry, 1987, 35: 926-938. [25] Millerd A, Morton R, Wells J R E. Role of isocitrate lyase in synthesis of oxalic acid in plants. Nature, 1962, 196: 955-956. [26] Chang C C, Beevers H. Biogenesis of oxalate in plant tissues. Plant Physiology, 1968, 43: 1821-1828. [27] Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots. Plant Physiology, 1996, 110: 971-977. |