[1] Deng Z Y, Zhang Q, Wang Q, et al . Influence of water storage capacity on yield of winter wheat in dry farming area in the Loess Plateau. Acta Ecologica Sinica, 2011, 31(18): 5281-5290. 邓振镛, 张强, 王强, 等. 黄土高原旱塬区土壤贮水量对冬小麦产量的影响. 生态学报, 2011, 31(18): 5281-5290. [2] Wang T, Li L L, Zhou H Y, et al . Effects of long-term fertilization on soil nitrogen under rain-fed farming in Loess Plateau of East Gansu. Acta Pedologica Sinica, 2016, 53(1): 177-188. 王婷, 李利利, 周海燕, 等. 长期不同施肥措施对雨养条件下陇东旱塬土壤氮素的影响. 土壤学报, 2016, 53(1): 177-188. [3] Yang N, Wang Z, Gao Y, et al . Effects of planting soybean in summer fallow on wheat grain yield, total N and Zn in grain and available N and Zn in soil on the Loess Plateau of China. European Journal of Agronomy, 2014, 58: 63-72. [4] Zhou L, Yang Y, Wang Z H, et al . Influence of maize-soybean rotation and N fertilizer on bacterial community composition. Acta Agronomica Sinica, 2013, 39(11): 2016-2022. 周岚, 杨永, 王占海, 等. 玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响. 作物学报, 2013, 39(11): 2016-2022. [5] Christiansen S, Ryan J, Singh M, et al . Potential legume alternatives to fallow and wheat monoculture for mediterranean environments. Crop & Pasture Science, 2014, 66(2): 175-182. [6] Northup B K, Rao S C. Summer legume ‘green’ nitrogen crops affect winter wheat forage in continuous rotation. Crops and Soils, 2016, 49(1): 39-41. [7] Qin S H, Cao L, Zhang J L, et al . Effect of rotation of leguminous plants on soil available nutrients and physical and chemical properties in continuous cropping potato field. Acta Agronomica Sinica, 2014, 40(8): 1452-1458. 秦舒浩, 曹莉, 张俊莲, 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响. 作物学报, 2014, 40(8): 1452-1458. [8] Tiemann L K, Gry A S, Atkinson E E, et al . Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 2015, 18(8): 761. [9] Song L P, Luo Z Z, Li L L, et al . Effects of lucerne-crop rotation patterns on soil aggregate stability and soil organic carbon. Chinese Journal of Eco-Agriculture, 2016, 24(1): 27-35. 宋丽萍, 罗珠珠, 李玲玲, 等. 苜蓿-作物轮作模式对土壤团聚体稳定性及有机碳的影响. 中国生态农业学报, 2016, 24(1): 27-35. [10] Chen D, Cheng J, Chu P, et al . Regional-scale patterns of soil microbes and nematodes across grasslands on the Mongolian plateau: relationships with climate, soil, and plants. Ecography, 2015, 38(6): 622-631. [11] Li G B, Li G Y, Sun C S, et al . Rhizosphere microbe quantity and biomass accumulation of Astragalus mongholicus under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1868-1874. 李国斌, 李光跃, 孙窗舒, 等. 干旱胁迫对蒙古黄芪生物量及其根际微生物种群数量的影响. 西北植物学报, 2015, 35(9): 1868-1874. [12] Fierer N, Caporaso J G, Fierer N, et al . Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 2012, 109(52): 21390-21395. [13] Liu W Q, Mao Z C, Yang Y H, et al . Analysis of soil bacterial diversity by using the 16S rRNA gene library. Acta Microbiologica Sinica, 2008, 48(10): 1344-1350. 刘玮琦, 茆振川, 杨宇红, 等. 应用16S rRNA基因文库技术分析土壤细菌群落的多样性. 微生物学报, 2008, 48(10): 1344-1350. [14] Herrera Paredes S, Lebeis S L. Giving back to the community: microbial mechanisms of plant——soil interactions. Functional Ecology, 2016, 30(7): 1043-1052. [15] Deng J Q, Liang Z T, Liu Y B, et al . Dry matter production and water use of winter wheat-forage catch crop rotation systems on the Longdong Loess Plateau. Acta Prataculturae Sinica, 2017, 26(2): 161-170. 邓建强, 梁志婷, 刘渊博, 等. 陇东旱塬冬小麦复种饲草轮作系统产量和水分利用特征. 草业学报, 2017, 26(2): 161-170. [16] Shi P, Gao Q, Wang S P, et al . Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity. Acta Ecologica Sinica, 2010, 30(22): 6173-6182. 时鹏, 高强, 王淑平, 等. 玉米连作及其施肥对土壤微生物群落功能多样性的影响. 生态学报, 2010, 30(22): 6173-6182. [17] Nannipieri P, Ascher J, Ceccherini M T, et al . Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4): 655-670. [18] Li X H, Han X Z, Wang S Q, et al . Soil Microorganism amount and population as affected by different crop roots. Soil and Crop, 2010, 26(2): 156-159. 李晓慧, 韩晓增, 王树起, 等. 土壤微生物对不同作物根系活动的响应. 土壤与作物, 2010, 26(2): 156-159. [19] Acostamartínez V, Mikha M M, Vigil M F. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains. Applied Soil Ecology, 2007, 37(1/2): 41-52. [20] Li T, Wang Z T, Liu L, et al . Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the Northwest Dryland. Scientia Agricultura Sinica, 2017, 50(5): 859-870. 李彤, 王梓廷, 刘露, 等. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响. 中国农业科学, 2017, 50(5): 859-870. [21] Yang R J, Ma H L, Yang Q F, et al . Effects of planting density and nitrogen application rate on soil microbial activity under wheat/forage rape multiple cropping. Chinese Journal of Applied Ecology, 2007, 18(1): 113-117. 杨瑞吉, 马海灵, 杨祁峰, 等. 种植密度与施氮量对麦茬复种饲料油菜土壤微生物活性的影响. 应用生态学报, 2007, 18(1): 113-117. [22] Li Z H, Han Z Q, Gao F H, et al . Effects of different preceding crops on rhizosphere microorganisms of flue-cured tobacco plant. Chinese Agricultural Science Bulletin, 2011, 27(22): 114-118. 李忠环, 韩智强, 高福宏, 等. 不同前茬对烤烟根际土壤微生物的影响. 中国农学通报, 2011, 27(22): 114-118. [23] Roesch L F W, Fulthorpe R R, Riva A, et al . Pyrosequencing enumerates and contrasts soil microbial diversity. Isme Journal, 2007, 1(4): 283-290. [24] Wen X, Dubinsky E, Yao W U, et al . Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere. Journal of Integrative Agriculture, 2016, 15(8): 1892-1902. [25] Wu F Z, Wang X Z. Effect of soybean-cucumber and wheat-cucumber rotation on soil microbial community species diversity. Acta Horticulturae Sinica, 2007, 34(6): 1543-1546. 吴凤芝, 王学征. 黄瓜与小麦和大豆轮作对土壤微生物群落物种多样性的影响. 园艺学报, 2007, 34(6): 1543-1546. [26] Sapp M, Harrison M, Hany U, et al . Comparing the effect of digestate and chemical fertiliser on soil bacteria. Applied Soil Ecology, 2014, 86: 1-9. [27] Liu J, Sui Y, Yu Z, et al . High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology & Biochemistry, 2014, 70(2): 113-122. [28] Wang F W, Wang X B, Li J C, et al . Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1302-1311. 王伏伟, 王晓波, 李金才, 等. 施肥及秸秆还田对砂姜黑土细菌群落的影响. 中国生态农业学报, 2015, 23(10): 1302-1311. [29] Yang S P, Lin Z H, Cui X H, et al . Current taxonomy of anoxygenic phototrophic bacteria—A review. Acta Microbiologica Sinica, 2008, 48(11): 1562-1566. 杨素萍, 林志华, 崔小华, 等. 不产氧光合细菌的分类学进展. 微生物学报, 2008, 48(11): 1562-1566. [30] Chen C J, Zhang H Q, Wang Y Q, et al . Characteristics of microbial community in each compartment of ABR ANAMMOX reactor based on high-throughput sequencing. Environmental Science, 2016, 37(7): 2652-2658. 陈重军, 张海芹, 汪瑶琪, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析. 环境科学, 2016, 37(7): 2652-2658. [31] Tian G J, Wang H, Chen L H. Isolation and determination of nitrogen-fixing bacteria in rhizosphere of main tree species in Chifeng, Inner Mongolia. Inner Mongolia Forestry Science and Technology, 2016, 42(1): 21-26. 田国杰, 王晗, 陈立红. 内蒙古赤峰地区主要树种根际固氮菌的分离和鉴定. 内蒙古林业科技, 2016, 42(1): 21-26. [32] Deng Z S, Du Y, He X L, et al . Combined rhizobium of robinia pseudoacacia with cellulose-decomposing bacteria for promoting growth of Shanghai Green ( Brassica chinensis ) and Sorghum vulgare . Journal of Microbiology, 2016, 36(1): 36-41. 邓振山, 杜洋, 贺晓龙, 等. 刺槐根瘤菌与纤维素分解菌对上海青和高粱的促生效应. 微生物学杂志, 2016, 36(1): 36-41. [33] Niu J, Chao J, Xiao Y, et al . Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate. Journal of Basic Microbiology, 2017, 57(1): 3-11. [34] Gong X F, Song Z F, Miao M J, et al . Regulation molecular mechanisms of Ca 2+ signaling on plant-environmental microorganism interactions. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(10): 2128-2136. 巩雪峰, 宋占锋, 苗明军, 等. Ca 2+ 信号在植物与环境微生物互相作用中的分子调控机制. 西北植物学报, 2016, 36(10): 2128-2136. [35] Wu Y P, Shi F Y, Hamid M I, et al . Endophytic bacterial diversity of wild soybean ( Glycine soja ) varieties with different resistance to soybean cyst nematode ( Heterodera glycines ). Acta Microbiologica Sinica, 2014, 54(8): 926-935. 武云鹏, 史凤玉, Hamid M I, 等. 野生大豆抗感大豆孢囊线虫材料内生细菌多样性分析. 微生物学报, 2014, 54(8): 926-935. [36] Togashi J, Ueda K, Namai T. Overwintering of Erwinia carotovora subsp. carotovora in diseased tissues in soil and its role as inoculum for soft rot of Chinese cabbage ( Brassica campestris L., Pekinensis Group). Journal of General Plant Pathology, 2001, 67(1): 45-50. [37] Zhao L, Chai Z X, Li J H, et al . Isolation and identification of four new Erwinia carotovora subsp. carotovora strains. Acta Prataculturae Sinica, 2011, 20(4): 244-251. 赵玲, 柴兆祥, 李金花, 等. 四株胡萝卜软腐欧文氏杆菌胡萝卜亚种新菌株的分离鉴定. 草业学报, 2011, 20(4): 244-251. [38] Hu J, He X H, Li D P, et al . Progress in research of Sphingomonas . Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 431-437. 胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展. 应用与环境生物学报, 2007, 13(3): 431-437. [39] Liu D D, Li M, Liu R J. Recent advances in the study of plant growth-promoting rhizobacteria in China. Chinese Journal of Ecology, 2016, 35(3): 815-824. 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展. 生态学杂志, 2016, 35(3): 815-824. [40] Im W T, Hu Z Y, Kim K H, et al . Description of Fimbriimonas ginsengisoli gen. nov., sp. nov. within the Fimbriimonadia class nov., of the phylum Armatimonadetes. Antonie van Leeuwenhoek, 2012, 102(2): 307-317. [41] Luo X, Han S, Lai S, et al . Long-term straw returning affects Nitrospira -like nitrite oxidizing bacterial community in a rapeseed-rice rotation soil. Journal of Basic Microbiology, 2017, 57(4): 309-315. [42] Ji G H. Advances in the study on Lysobacter spp. bacteria and their effects on biological control of plant diseases. Journal of Yunnan Agricultural University: Natural Science Edition, 2011, 26(1): 124-130. 姬广海. 溶杆菌属及其在植物病害防治中的研究进展. 云南农业大学学报: 自然科学版, 2011, 26(1): 124-130. [43] Wagner M, Horn M. The Planctomycetes , Verrucomicrobia , Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Current Opinion in Biotechnology, 2006, 17(3): 241-249. [44] Wang Q T, Zhu W R, Liu M L, et al . Comparison on bacterial community of rhizosphere and bulk soil of poplar plantation based on pyrosequencing. Chinese Journal of Applied Environmental Biology, 2015, 21(5): 967-973. 汪其同, 朱婉芮, 刘梦玲, 等. 基于高通量测序的杨树人工林根际和非根际细菌群落结构比较. 应用与环境生物学报, 2015, 21(5): 967-973. [45] Long J, Huang C Y, Teng Y, et al . Research on soil microbial characteristics of soil- Elsholtzia harchowensis system in copper mine tailings. Acta Pedologica Sinica, 2004, 41(1): 120-125. 龙健, 黄昌勇, 滕应, 等. 铜矿尾矿库土壤-海洲香薷( Elsholtzia harchowensis )植物体系的微生物特征研究. 土壤学报, 2004, 41(1): 120-125. [46] Guo J, Chi J. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant and Soil, 2014, 375(1): 205-214. [47] Sangwan P, Chen X, Hugenholtz P, et al . Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, spartobacteria classis nov., of the phylum verrucomicrobia. Applied & Environmental Microbiology, 2004, 70(10): 5875-5881. [48] Oh Y S, Roh D H. Phenylobacterium muchangponense sp. nov., isolated from beach soil, and emended description of the genus Phenylobacterium. International Journal of Systematic & Evolutionary Microbiology, 2012, 62: 977-983. |