[1] Luo Y Q, Gerten D, Le Maire G, et al. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 2008, 14(9): 1986-1999. [2] IPCC. Climate Change 2007:the Physical Basis//Solomon D. Cambridge, UK: Cambridge Universtiy Press, 2007. [3] Zhou X H, Weng E S, Luo Y Q.Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecological Applications, 2008, 18(2): 453-466. [4] Xu X, Sherry R A, Niu S, et al. Net primary productivity and rain use efficiency as affected by warming, altered precipitation, and clipping in a mixed grass prairie. Global Change Biology, 2013, 19(9): 2753-2764. [5] Yan Z Q, Qi Y C, Dong Y S, et al. Nitrogen cycling in grassland ecosystem in response to climate change and Human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. 闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. [6] Zhang C H, Wang M J, Zhang L, et al. Response of meadow steppe ANPP to climate change in Hulunbeir, Inner Mongolia-a simulation study. Acta Prataculturae Sinica, 2013, 22(3): 41-50. 张存厚, 王明玖, 张立, 等. 呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟. 草业学报, 2013, 22(3): 41-50. [7] Silvola J, Ahlholm U.Photosynthesis in willows (Salix×dasyclados) grown at different CO2 concentrations and fertilization levels. Oecologia, 1992, 91(2): 208-213. [8] Zhou X H, Liu X Z, Wallace L L, et al. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. Journal of Integrative Plant Biology, 2007, 49(3): 270-281. [9] Yan Z Q, Qi Y C, Li S J, et al. Soil microorganisms to enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition-a review. Micobiology China, 2017, 46(6): 1481-1490. 闫钟清, 齐玉春, 李素俭, 等. 降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展. 微生物学通报, 2017, 46(6): 1481-1490. [10] Chen Q S, Li L H, Han X G, et al. Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologicca Sinica, 2004, 24(4): 831-836. 陈全胜, 李凌浩, 韩兴国, 等. 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 2004, 24(4): 831-836. [11] Lü X M, Wang Y H, Zhou G S, et al. Interactive effects of changing precipitation and elevated temperatures on plant biomass and its allocation of Stipa breviflora. Acta Ecologica Sinica, 2015, 35(3): 752-760. 吕晓敏, 王玉辉, 周广胜, 等. 温度与降水协同作用对短花针茅生物量及其分配的影响. 生态学报, 2015, 35(3): 752-760. [12] Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environmental changes suppressed by elevated CO2. Science, 2002, 298(5600): 1987-1990. [13] Gu R, Chao L M, Zhang L X, et al. The influence of hydorthermal factors on soil respiration and soil temperature sensitivity of Stipa krylovii steppe, Inner Mongolia, China. Acta Prataculturae Sinica, 2015, 24(4): 21-29. 谷蕊, 潮洛蒙, 张立欣, 等. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响. 草业学报, 2015, 24(4): 21-29. [14] Zhou L Y, Zhou X H, Shao J J, et al. Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Global Change Biology, 2016, 22(9): 3157-3169. [15] Luo Y Q, Reynolds J F.Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology, 1999, 80(5): 1568-1583. [16] Weng E S, Luo Y Q.Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis. Journal of Geophysical Research-Biogeosciences, 2008, 113(G3): G03003. [17] Feng X H, Cheng R M, Xiao W F, et al. Productivity and carbon dynamic of the Masson Pine stands in Jigongshan region based on LPJ-GUESS model. Scientia Silvae Sinicae, 2013, 49(4): 7-15. 封晓辉, 程瑞梅, 肖文发, 等. 基于LPJ-GUESS模型的鸡公山马尾松林生产力和碳动态. 林业科学, 2013, 49(4): 7-15. [18] Li X D, Fu H, Guo D, et al. Partitioning soil respiration and assessing the carbon balance in a Setaria italica (L.) Beauv. cropland on the Loess Plateau, Northern China. Soil Biology & Biochemistry, 2010, 42(2): 337-346. [19] Wang Y P, Leuning R.A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agricultural and Forest Meteorology, 1998, 91(1): 89-111. [20] Farquhar G, von Caemmerer S V, Berry J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1): 78-90. [21] Ball J T, Woodrow I E, Berry J A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions//Biggins J, Editor. Progress in Photosynthesis Research. Martinus Nijhoff: Zoetermeer, Netherlands, 1987: 221-224. [22] Luo Y, Meyerhoff P, Loomis R.Seasonal patterns and vertical distributions of fine roots of alfalfa (Medicago sativa L.). Field Crops Research, 1995, 40(2): 119-127. [23] Arora V K, Boer G J.A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 2005, 11(1): 39-59. [24] Li X, Fu H, Li X, et al. Effects of land-use regimes on carbon sequestration in the Loess Plateau, northern China. New Zealand Journal of Agricultural Research, 2008, 51(1): 45-52. [25] Peng F.Initial Response of Alpine Meadow Ecosystem to Warming Manipulation in Permafrsot Area of Qinghai-Tibet Plateau. Beijing: University of Chinese Academy of Sciences, 2012. 彭飞. 模拟增温对多年冻土高寒草甸生态系统的影响. 北京: 中国科学院大学, 2012. [26] Qi W W, Niu H S, Wang S P, et al. Simulation of effects of warming on carbon budget in alpine meadow ecosystem on the Tibetan Plateau. Acta Ecologica Sinica, 2012, 32(6): 1713-1722. 亓伟伟, 牛海山, 汪诗平, 等. 增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究. 生态学报, 2012, 32(6): 1713-1722. [27] Luo Y Q, Sherry R, Zhou X H, et al. Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest. Global Change Biology Bioenergy, 2009, 1(1): 62-74. [28] Drake B G, Gonzàlez-Meler M A, Long S P. More efficient plants: a consequence of rising atmospheric CO2. Annual Review of Plant Biology, 1997, 48(1): 609-639. [29] Chen Y Q.Effects of Simulated Warming on Growth and Water Utilization of C3 and C4 Plants. Hohehot: Inner Mongolia University, 2014. 陈宇琪. 模拟增温对C3、C4植物生长及水分利用的影响. 呼和浩特: 内蒙古大学, 2014. [30] Yahdjian L, Sala O E.Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 2006, 87(4): 952-962. [31] Mu S J, Li J L, Yang H F, et al. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15. 穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15. [32] Ma W H, Yang Y H, He J S.Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 2008, 38(1): 84-92. 马文红, 杨元合, 贺金生. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学(C 辑), 2008, 38(1): 84-92. [33] Su H M, Li X Y, He B H, et al. Rainfall effects on soil microbial biomass and soil respiration under different land use conditions. Journal of Soil and Water Conservation, 2011, 25(6): 92-95. 苏慧敏, 李叙勇, 何丙辉, 等. 不同土地利用方式下降雨对土壤微生物量和呼吸的影响. 水土保持学报, 2011, 25(6): 92-95. [34] Wu Z, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology, 2011, 17(2): 927-942. [35] Anderson L J, Maherali H, Johnson H B, et al. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Global Change Biology, 2001, 7(6): 693-707. [36] Morgan J, Pataki D, Körner C, et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 2004, 140(1): 11-25. [37] Hungate B A, Reichstein M, Dijkstra P, et al. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Global Change Biology, 2002, 8(3): 289-298. [38] Jiang Y L, Zhou G S, Wang Y H, et al. Advances in the adaptability of zonal Stipa plants to CO2 and climate change in Inner Mongolia. Acta Ecologica Sinica, 2015, 35(14): 4559-4569. 蒋延玲, 周广胜, 王玉辉, 等. 内蒙古地带性针茅植物对CO2和气候变化的适应性研究进展. 生态学报, 2015, 35(14): 4559-4569. [39] Johnson D.Simulated nitrogen cycling response to elevated CO2 in Pinus taeda and mixed deciduous forests. Tree Physiology, 1999, 19: 321-327. [40] Luo Y Q, Sims D A, Griffin K L.Nonlinearity of photosynthetic responses to growth in rising atmospheric CO2: an experimental and modelling study. Global Change Biology, 1998, 4(2): 173-183. [41] Wang X L, Xu S H, Liang H.The experimental study of the effects of CO2 concentration enrichment on growth, development and yield of C3 and C4 crops. Scientia Agricultura Sinica, 1998, 31(1): 56-62. 王修兰, 徐师华, 梁红. CO2浓度增加对C3、C4作物生育和产量影响的实验研究. 中国农业科学, 1998, 31(1): 56-62. [42] Ise T, Moorcroft P R.The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry, 2006, 80(3): 217-231. [43] Cowling S A, Shin Y.Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Global Ecology and Biogeography, 2006, 15(6): 553-566. [44] Wall G, Garcia R, Kimball B, et al. Interactive effects of elevated carbon dioxide and drought on wheat. Agronomy Journal, 2006, 98(2): 354-381. [45] Gerten D, Luo Y, Le Maire G, et al. Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 2008, 14(10): 2365-2379. |