[1] Li Y H.The divergence and convergence of Aneurolepidium chinese steppe and Stip grandis steppe under the grazing influence in Xilin river valley, Inner Mongolia. Chinese Journal of Plant Ecology, 1988, 12(3): 189-196. 李永宏. 内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同. 植物生态学报, 1988, 12(3): 189-196. [2] Zhao H.The Study of Nutrition Value of The Leymus chinensis for Dairy Cattle and Assiociative Effects of Feeds. Daqing: Heilongjiang Bayi Agricultural University, 2008. 赵鹤. 羊草对奶牛营养价值及其日粮组合效应的研究. 大庆: 黑龙江八一农垦大学, 2008. [3] Ferraro D O, Oesterheld M.Effect of defoliation on grass growth. A quantitative review. Oikos, 2002, 98(1): 125-133. [4] Davidson J L, Milthorpe F L.Leaf growth in dactylis glomerate following defoliation. Annals of Botany, 1966, 30(2): 173-184. [5] Wang Z F, Wang D J, Yu H Z, et al. Effects of cutting time and stubble height on hay yield and quality of Leymus chinensis meadow. Pratacultural Science, 2016, (2): 276-282. 王志锋, 王多伽, 于洪柱, 等. 刈割时间与留茬高度对羊草草甸草产量和品质的影响. 草业科学, 2016, (2): 276-282. [6] Zhong Y K, Bao Q H.The effects of different mowing intensity on natural grassland. Grassland of China, 1999, (5): 15-18. 仲延凯, 包青海. 不同刈割强度对天然割草地的影响. 中国草地, 1999, (5): 15-18. [7] Han L, Guo Y J, Han J G, et al. A study on the diversity and aboveground biomass in a Leymus chinensis meadow steppe community under different cutting intensities. Acta Prataculturae Sinica, 2010, 19(3): 70-75. 韩龙, 郭彦军, 韩建国, 等. 不同刈割强度下羊草草甸草原生物量与植物群落多样性研究. 草业学报, 2010, 19(3): 70-75. [8] Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis. Genome Biology, 2016, 17(1): 181. [9] Hou X Y.Advances and prospects of grassland plant basic biology research. China Basic Science, 2016, 18(2): 67-76. 侯向阳. 草原植物基础生物学研究进展与展望. 中国基础科学, 2016, 18(2): 67-76. [10] Chen S, Cai Y, Zhang L, et al. Transcriptome analysis reveals common and distinct mechanisms for sheepgrass (Leymus chinensis) responses to defoliation compared to mechanical wounding. Plos One, 2014, 9(2): e89495. [11] Huang X, Peng X, Zhang L, et al. Bovine serum albumin in saliva mediates grazing response in Leymus chinensis revealed by RNA sequencing. BMC Genomics, 2014, 15(1): 1126. [12] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. [13] Haas B J, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 2013, 8(8): 1494-1512. [14] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410. [15] Punta M, Coggill P C, Eberhardt R Y, et al. The Pfam protein families database. Nucleic Acids Research, 2012, 36: 263-266. [16] Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 2012, 40: D109-D114. [17] Wu C H, Apweiler R, Bairoch A, et al. The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Research, 2006, 34: D187-D191. [18] Ye J.WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 2006, 34(Web Server issue): W293-W297. [19] Young M D, Wakefield M J, Smyth G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11(2): R14. [20] Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(Web Server issue): W316-W322. [21] Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25. [22] Li B, Dewey C N, Li B, et al. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323. [23] Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics (Oxford, England), 2010, 26(1): 136-138. [24] Ernst J, Barjoseph Z.STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7(7): 1-11. [25] Sun Y, Wang F, Wang N, et al. Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. Plos One, 2013, 8(1): e53632. [26] Zhao P, Liu P, Yuan G, et al. New insights on drought stress response by global investigation of gene expression changes in sheepgrass (Leymus chinensis). Frontiers in Plant Science, 2016, 7(147): 954. [27] Devoto A, Ellis C.Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Molecular Biology, 2005, 58(4): 497-513. [28] Turner J G, Ellis C, Devoto A.The jasmonate signal pathway. Plant Cell, 2002, 14(Suppl 1): S153-S164. [29] Zhou W.Molecular Mechanism of Jasmonate-regulated Plant Defense Controled by JAV1. Beijing: Tsinghua University, 2013. 周武. JAV1调控茉莉素介导的植物抗性反应的分子机理研究. 北京: 清华大学, 2013. [30] Yan J, Zhang C, Gu M, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell, 2009, 21(8): 2220. [31] Adams E, Turner J.Illuminating COI1: a component of the Arabidopsis jasomonate receptor complex also interacts with ethylene signaling. Plant Signaling & Behavior, 2010, 5(12): 1682-1684. [32] Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 2007, 448(7154): 661-665. [33] Chen X Y, Tang Z C.Plant Physiology and Moleculer Biology. Beijing: Higher Education Press, 2012: 553-554. 陈晓亚, 汤章城. 植物生理与分子生物学. 北京: 高等教育出版社, 2012: 553-554. [34] Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324(5930): 1064. [35] Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324(5930): 1068-1071. [36] Gonzalez-Guzman M, Pizzio G A, Antoni R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. The Plant Cell, 2012, 24(6): 2483-2496. [37] Schweighofer, Alois, Hirt, et al. Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science, 2004, 9(5): 236. [38] Jia L, Liu M M, Zhang H Q, et al. Antioxidant defense system responses of Artemisia frigida to mechanical damage. Journal of Zhejiang A & F University, 2016, 33(3): 462-470. 贾丽, 刘盟盟, 张洪芹, 等. 冷蒿抗氧化防御系统对机械损伤的响应. 浙江农林大学学报, 2016, 33(3): 462-470. [39] Domergue F, Vishwanath S J, Joubès J, et al. Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiology, 2010, 153(4): 1539-1554. [40] Koo A J K, Cooke T F, Howe G A. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 9298. [41] Yan Y, Stolz S, Chételat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell, 2007, 19(8): 2470-2483. [42] Walley J W, Coughlan S, Hudson M E, et al. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. Plos Genetics, 2007, 3(10): 1800-1812. [43] Chen F,D’Auria J C,Tholl D, et al. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant Journal, 2003, 36(5): 577-588. |