欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2019, Vol. 28 ›› Issue (1): 170-179.DOI: 10.11686/cyxb2018064

• 研究论文 • 上一篇    下一篇

红三叶根际溶磷菌的筛选与培养基优化

李海云1, 姚拓1,*, 张榕2, 张洁2, 李智燕2, 荣良燕2, 路晓雯1, 杨晓蕾1, 夏东慧1, 罗慧琴1   

  1. 1.甘肃农业大学草业学院,甘肃 兰州 730070;
    2.甘肃省草原技术推广总站,甘肃 兰州 730010
  • 收稿日期:2018-01-25 出版日期:2019-01-20 发布日期:2019-01-20
  • 通讯作者: *E-mail: yaotuo@gsau.edu.cn
  • 作者简介:李海云(1989-),男,甘肃永靖人,在读博士。E-mail: lihaiyun0923@163.com
  • 基金资助:
    甘肃省草业技术创新联盟科技支撑项目(GCLM2016006)和甘肃省农业生物技术研究与应用开发项目(GNSW-2016-36)资助

Isolation and screening of phosphate-solubilizing bacteria from the rhizosphere of Trifolium pratense and culture medium optimization

LI Hai-yun1, YAO Tuo1,*, ZHANG Rong2, ZHANG Jie2, LI Zhi-yan2, RONG Liang-yan2, LU Xiao-wen1, YANG Xiao-lei1, XIA Dong-hui1, LUO Hui-qin1   

  1. 1.College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China;
    2.Grassland Station of Gansu Province, Lanzhou 730010, China
  • Received:2018-01-25 Online:2019-01-20 Published:2019-01-20
  • Contact: *E-mail: yaotuo@gsau.edu.cn

摘要: 为从岷山红三叶根际土壤中筛选出大量高效溶磷菌株,本研究采用Pikovaskaia’s、PKOC1和PKOC2三种溶磷培养基进行溶磷菌株的初步筛选和优良溶磷菌株16S rRNA基因序列鉴定,并对分离筛选效果较好的PKOC2培养基进行响应面优化。结果表明:采用Pikovaskaia’s、PKOC1和PKOC2三种溶磷培养基,从红三叶根际分离出26株溶磷菌株;经16S rRNA基因序列对7株优良溶磷菌株进行初步比对鉴定,初步鉴定结果为:菌株MHS4为蜡样芽胞杆菌(Bacillus cereus);菌株MHS7和MHS19为枯草芽胞杆菌(Bacillus subtilis);菌株MHS27为苏云金杆菌(Bacillus thuringiensis);菌株MHS30为荧光假单胞菌(Pseudomonas fluorescens);菌株MHS31为盖氏假单胞菌(Pseudomonas gessardii);菌株MHS49为产酸克雷伯菌(Klebsiella oxytoca)。PKOC2溶磷培养基优化配方为:葡萄糖18.19 g·L-1,Ca3(PO4)2 5 g·L-1,MgCl2·6H2O 3.21 g·L-1,MgSO4·7H2O 0.25 g·L-1,KCl 0.2 g·L-1,(NH4)2SO4 0.08 g·L-1。红三叶根际溶磷菌资源丰富,优化后的溶磷培养基为高效溶磷菌资源筛选提供资源支持。

关键词: 红三叶, 溶磷菌, 响应面, 培养基优化

Abstract: In order to optimize isolation and screening of phosphate solubilizing bacteria from the rhizosphere soil of Trifolium pratense (Cv. Minshan), a preliminary extraction using Pikovaskaia’s, PKOC1 and PKOC2 phosphate solubilizing media was carried out, and the 16S rRNA gene sequence was determined for the bacterial strains with excellent phosphate solubilizing ability. The separation and screening effect of PKOC2 was better than that of PKOC1 and Pikovaskaia’s. The composition of the culture medium was optimized using a response surface experiment design. The optimal composition so identified for the PKOC2 medium was: glucose 18.19 g·L-1, Ca3(PO4)2 5 g·L-1, MgCl2·6H2O 3.21 g·L-1, MgSO4·7H2O 0.25 g·L-1, KCl 0.2 g·L-1, (NH4)2SO4 0.08 g·L-1. It was found that 26 strains of phosphate solubilizing bacteria were isolated from T. pratense rhizosphere using these techniques. A preliminary identification of 7 isolated bacterial strains with excellent phosphate solubilizing ability using the strains 16S rRNA gene sequence indicated that a strain designated MHS4 was Bacillus cereus, strain MHS7 and MHS19 were Bacillus subtilis, strain MHS27 was Bacillus thuringiensis, strain MHS30 was Pseudomonas fluorescens, strain MHS31 was Pseudomonas gessardii, and strain MHS49 was Klebsiella oxytoca. To summarise, phosphate-solubilizing bacteria were abundant in the rhizosphere of T. pretense were abundant, and the optimized phosphate-solubilizing medium provided support for the screening of bacterial strains with excellent phosphate-solubilizing ability.

Key words: Trifolium pratense, phosphate-solubilizing bacteria, response surface design, medium optimizied