[1] Wang Z P, Chen Q S.Recently photosynthesized carbon allocation and turnover: a minor review of the literature. Chinese Journal of Plant Ecology, 2005, 29(5): 845-850. 王智平, 陈全胜. 植物近期光合碳分配及转化. 植物生态学报, 2005, 29(5): 845-850. [2] Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field serve. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026. [3] Stone R.Ecosystems, have desert researchers discovered a hidden loop in the carbon cycle. Science, 2008, 320(5882): 1409-1410. [4] Tu Z F, Li M X, Sun T.The status and trend analysis of desertification and sandification. Forest Resources Management, 2016, (1): 1-5. 屠志方, 李梦先, 孙涛. 第五次全国荒漠化和沙化监测结果及分析. 林业资源管理, 2016, (1): 1-5. [5] Yan W.Biomass allocation and its influencing factors in typical terrestrial ecosystems in China. Shanghai: East China Normal University, 2017. 颜韦. 中国典型陆地生态系统的生物量分配及其影响因素分析. 上海: 华东师范大学, 2017. [6] Heimann M, Reichstein M.Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289-292. [7] Greaver T L.A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 2010, 13(7): 819-828. [8] Zhang B W.Asymmetric response of semi-arid grassland productivity and carbon cycle to precipitation changes. Beijing: Chinese Academy of Sciences University, 2016. 张兵伟. 半干旱草原生产力和碳循环对降水变化的非对称响应. 北京: 中国科学院大学, 2016. [9] Hafner S, Unteregelsbacher S, Seeber E, et al. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Global Change Biology, 2012, 18(2): 528-538. [10] Lin G H.Stable isotope ecology. Beijing: Higher Education Press, 2013. 林光辉. 稳定同位素生态学. 北京: 高等教育出版社, 2013. [11] Wu Y, Tan H C, Deng Y C, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Global Change Biology, 2010, 16(8): 2322-2333. [12] Kuzyakov Y, Domanski G.Model for rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labelling of ryegrass. Plant & Soil, 2002, 239(1): 87-102. [13] Ge T, Yuan H, Zhu H, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biology & Biochemistry, 2012, 48(4): 39-46. [14] Wang Q Y, Zhu Z K, Yuan H C.Allocation and input efficiency of assiimilated carbon in rice-soil systems at different growth stages. Research of Environmental Sciences, 2016, 29(10): 1471-1478. 王群艳, 祝贞科, 袁红朝, 等. 不同生育期光合碳在水稻-土壤系统中的分配及输入效率. 环境科学研究, 2016, 29(10): 1471-1478. [15] Chen S, Zhu Z K, Yuan H C, et al. Dynamics of rice photosynthesized carbon input and its response to nitrogen fertilization at the jointing stage: 13C-CO2 pulse-labeling. Research of Environmental Sciences, 2018, (1): 331-338. 陈珊, 祝贞科, 袁红朝, 等. 拔节期水稻光合碳输入的动态变化及其对施氮的响应: 13C-CO2脉冲标记. 环境科学, 2018, (1): 331-338. [16] Zhang R, Zhao Y, He H B, et al. Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: Based on stable isotopic technique. Journal of Applied Ecology, 2017, 28(7): 2379-2388. 张蕊, 赵钰, 何红波, 等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响. 应用生态学报, 2017, 28(7): 2379-2388. [17] Ma T, Liu X, Li J, et al. Effects of elevated atmospheric CO2 on the distribution and accumulation of photosynthetic carbon in soil-plant (Spring Wheat) system. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2238-2246. 马田, 刘肖, 李骏, 等. CO2浓度升高对土壤-植物(春小麦)系统光合碳分配和积累的影响. 核农学报, 2014, 28(12): 2238-2246. [18] Xu Z Z, Zhou G S, Xiao C W, et al. Iteracive effects of doubled atmospheric CO2 concentrations and soil drought on whole plant carbon allocation in two dominant desert shrubs. Acta Pytoecologica Sinica, 2005, 29(2): 281-288. 许振柱, 周广胜, 肖春旺, 等. CO2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响. 植物生态学报, 2005, 29(2): 281-288. [19] Li Q H, Jiang Z P.Research on plant species of genus Nitraria L. Beijing: China Forestry Publishing Press, 2011. 李清河, 江泽平. 白刺研究. 北京:中国林业出版社, 2011. [20] Bao F, He J, Cao Y L, et al. Response and acclimation of photosynthesis in Nitraria tangutorum to rain addition treatments in temperate desert in Northwest China. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 508-514. 鲍芳, 何季, 曹燕丽, 等. 荒漠植物白刺光合作用对人工模拟增雨的响应与适应. 中国科学院大学学报, 2017, 34(4): 508-514. [21] Piao S L, Fang J Y, Huang Y.The carbon balance of terrestrial ecosystems in China. China Basic Science, 2010, 12(2): 20-22. 朴世龙, 方精云, 黄耀. 中国陆地生态系统碳收支. 中国基础科学, 2010, 12(2): 20-22. [22] Liu W, Lü H H, Chen Y X, et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system. Journal of Applied Ecology, 2008, 19(3): 674-680. 刘微, 吕豪豪, 陈英旭, 等. 稳定碳同位素技术在土壤-植物系统碳循环中的应用. 应用生态学报, 2008, 19(3): 674-680. [23] Kuzyakov Y, Schneckenberger K.Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Archives of Agronomy & Soil Science, 2004, 50(1): 115-132. [24] Lu Y, Watanabe A, Kimura M.Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochemical Cycles, 2002, 16(4): 31-32, 38. [25] Deng Y W, Tang C, Yuan H C, et al. The 13C-CO2 pulsing labeling method: distribution of rice photosynthetic carbon in plant-soil systems during different rice growth stages. Acta Ecologica Sinica, 2017, 37(19): 6466-6471. 邓扬悟, 唐纯, 袁红朝, 等. 13C脉冲标记法: 不同生育期水稻光合碳在植物-土壤系统中的分配. 生态学报, 2017, 37(19): 6466-6471. [26] Qian Y, Sun H G, Dong R X, et al. Research progress of carbohydrates allocation in conifers. Scientia Silvae Sinicae, 2018, 54(1): 141-153. 钱杨, 孙洪刚, 董汝湘, 等. 针叶树碳水化合物分配研究进展. 林业科学, 2018, 54(1): 141-153. [27] Yu P, Zhang Y L, Wang C X, et al. Distribution of photosynthetic carbon in rice-soil system relative to rice growth stage. Acta Pedologica Sinica, 2017, 54(5): 1218-1229. 于鹏, 张玉玲, 王春新, 等. 不同生育期光合碳在水稻-土壤系统中的分配. 土壤学报, 2017, 54(5): 1218-1229. [28] Zhang Z X, Chen P, Zheng E N, et al. Effect of different water and nitrogen managements on rice leaf water use efficiency based on delta 13C. Transactions of the Chinese Society for Agricultural Machinery, 2018, (5): 310-319. 张忠学, 陈鹏, 郑恩楠, 等. 基于13C分析不同水氮管理对水稻水分利用效率的影响. 农业机械学报, 2018, (5): 310-319. [29] Crawford M C, Grace P R, Oades J M.Allocation of carbon to shoots, roots, soil and rhizosphere respiration by barrel medic (Medicago truncatula) before and after defoliation. Plant & Soil, 2000, 227(1/2): 67-75. [30] Werth M, Kuzyakov Y.Below-ground partitioning (14C) and isotopic fractionation (delta 13C) of carbon recently assimilated by maize. Isotopes in Environmental and Health Studies, 2005, 41(3): 237-248. [31] Swinnen J, Vanveen J A, Merckx R.Rhizosphere carbon fluxes in field-grown spring wheat: Model calculations based on 14C partitioning after pulse-labelling. Soil Biology & Biochemistry, 1994, 26(2): 171-182. [32] Butler J L, Bottomley P J, Griffith S M, et al. Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biology & Biochemistry, 2004, 36(2): 371-382. [33] Kuzyakov Y, Domanski G.Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 2015, 163(4): 421-431. [34] Yin Y F, Yang Y S, Gao R, et al. A preliminary study on phyto-enrichment 13C labeling technique. Acta Pedologica Sinica, 2010, 47(4): 790-793. 尹云锋, 杨玉盛, 高人, 等. 植物富集13C标记技术的初步研究. 土壤学报, 2010, 47(4): 790-793. [35] Ostle N, Ineson P, Benham D, et al. Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Communications in Mass Spectrometry, 2015, 14(15): 1345-1350. [36] Ren Y.Responses of carbon sequestration capacity to simulation rain addition of Nitraria tangutorum. Beijing: Chinese Academy of Forestry, 2014. 任昱. 荒漠植物白刺固碳能力对模拟增雨的响应. 北京: 中国林业科学研究院, 2014. [37] Dang X H, Meng Z J, Gao Y, et al. Photosynthetic carbon fixation capacity of five natural desert shrubs in west Ordos region. Journal of Arid Land Resources and Environment, 2017, 31(11): 128-135. 党晓宏, 蒙仲举, 高永, 等. 西鄂尔多斯地区5种荒漠灌丛光合固碳能力研究. 干旱区资源与环境, 2017, 31(11): 128-135. |