[1] Elith J, Leathwick J R.Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 2009, 40: 667-697. [2] Guisan A, Thuiller W.Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 2005, 8: 993-1009. [3] Ferrier S.Mapping spatial pattern in biodiversity for regional conservation planning: Where to from here? Systematic Biology, 2002, 51: 331-363. [4] Graham C H, Ferrier S, Huettman F, et al. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecology and Evolution, 2004, 19(9): 497-503. [5] Jiang X, Ni J.Species-climate relationships of 10 desert plant species and their estimated potential distribution range in the arid lands of northwestern China. Acta Phytoecologica Sinica, 2005, 29(1): 98-107. 蒋霞, 倪健. 西北干旱区10种荒漠植物地理分布与大气候的关系及其可能潜在分布区的估测. 植物生态学报, 2005, 29(1): 98-107. [6] Wang Y L, Li H, Yang X, et al. Prediction of geographical distribution of Vitex trifolia var. simplicifolia under climate change based on the MaxEnt model. Acta Prataculturae Sinica, 2017, 26(7): 1-10. 王亚领, 李浩, 杨旋, 等. 基于Maxent模型和不同气候变化情景的单叶蔓荆潜在地理分布预测. 草业学报, 2017, 26(7): 1-10. [7] Anderson R P, Raza A.The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 2010, 37(7): 1378-1393. [8] Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151. [9] Yi Y J, Cheng X, Wieprecht S, et al. Comparison of habitat suitability models using different habitat suitability evaluation methods. Ecological Engineering, 2014, 71: 335-345. [10] Fan S X, Zheng J W, Wei S K, et al. Predicting suitable distribution of dominant herbaceous plant functional groups in a forest-steppe zone, Hebei, China. Acta Prataculturae Sinica, 2018, 27(3): 24-32. 范顺祥, 郑建伟, 魏士凯, 等. 河北省森林草原区主要草本植物功能群适宜分布预测. 草业学报, 2018, 27(3): 24-32. [11] Zhang L, Liu S R, Sun P S, et al. Comparative evaluation of multiple models of the effects of climate change on the potential distribution of Pinus massoniana. Chinese Journal of Plant Ecology, 2011, 35(11): 1091-1105. 张雷, 刘世荣, 孙鹏森, 等. 气候变化对马尾松潜在分布影响预估的多模型比较. 植物生态学报, 2011, 35(11): 1091-1105. [12] Zhang Z D, Zang R G.Predicting potential distributions of dominant woody plant keystone species in a natural tropical forest landscape of Bawangling, Hainan island, south China. Journal of Plant Ecology, 2007, 31(6): 1079-1091. 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布. 植物生态学报, 2007, 31(6): 1079-1091. [13] Svenning J C, Skov F.The relative roles of environment and history as controls of tree species composition and richness in Europe. Journal of Biogeography, 2005, 32(6): 1019-1033. [14] Larson E R, Olden J D.Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography, 2012, 21(11): 1114-1125. [15] Xu Z L, Zhao C Y, Feng Z D.Species distribution models to estimate the deforested area of Picea crassifolia in arid region recently protected: Qilian Mts. national nature reserve (China). Polish Journal of Ecology, 2012, 60(3): 515-524. [16] Soberon J, Peterson A T.Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Information, 2005, 2: 1-10. [17] Phillips S J, Anderson R P, Schapire R E.Maximum entropy modeling of species geographic distributions. Ecological Modeling, 2006, 190: 231-259. [18] Yi Y J, Xi C, Yang Z F, et al. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92: 260-269. [19] Wu Z Y, Raven P H, Hong D Y.Flora of China. Beijing: Science Press, 2006. [20] Yu J, Wu Y Q, Wei L, et al. Drought resistance of different Stipa bungeana populations in the semi-arid region of Loess Plateau. Acta Agrestia Sinica, 2012, 20(6): 1065-1070. 俞靓, 吴艳芹, 魏琳, 等.黄土高原半干旱区不同本氏针茅种群抗旱性研究. 草地学报, 2012, 20(6): 1065-1070. [21] Peng J T, Zhu Z Y, Liang C Z, et al. The study progress on the phylogeny and spatial distribution of Stipa genus in China. Journal of Arid Land Resources and Environment, 2016, 30(9): 165-170. 彭江涛, 朱宗元, 梁存柱, 等. 中国针茅属植物系统发育与空间分异研究进展.干旱区资源与环境, 2016, 30(9): 165-170. [22] Schlesinger W H.Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232-234. [23] Yu J, Jing Z B, Cheng J M.Genetic diversity of Stipa bungeana Trin.populations in Shaanxi analyzed by ISSR markers. Acta Agrestia Sinica, 2012, 20(3): 512-517. 俞靓, 井赵斌, 程积民. 陕西省本氏针茅自然种群遗传多样性的ISSR分析. 草地学报, 2012, 20(3): 512-517. [24] Cheng J, Hu T M, Cheng J M.Responses of vegetation restoration to climate change during the past 30 years in enclosed grassland of Yunwu Mountain in semi-arid region of the Loess Plateau. Acta Ecologica Sinica, 2010, 30(10): 2630-2638. 程杰, 呼天明, 程积民. 黄土高原半干旱区云雾山封禁草原30年植被恢复对气候变化的响应. 生态学报, 2010, 30(10): 2630-2638. [25] Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17: 43-57. [26] Yi J, Cheng X, Yang F, et al. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 2016, 92: 260-269. [27] Vanagas G.Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive Cardio Vascular and Thoracic Surgery, 2004, 3: 319-322. [28] Chen J J, Yan Y Y, Cong R H, et al. Prediction of potential distribution of Stipa breviflorain China based on MaxEnt model. Chinese Journal of Grassland, 2016, 38(5): 78-84. 陈俊俊, 燕亚媛, 丛日慧, 等. 基于MaxEnt模型的短花针茅在中国的潜在分布区研究及预估. 中国草地学报, 2016, 38(5): 78-84. [29] Jenks G F.The data model concept in statistical mapping. International Yearbook of Cartography, 1967, 7: 186-190. [30] Hu Z J, Zhang Y L, Yu H B.Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS. Chinese Journal of Applied Ecology, 2015, 26(2): 505-511. 胡忠俊, 张镱锂, 于海彬. 基于MaxEnt模型和GIS的青藏高原紫花针茅分布格局模拟.应用生态学报, 2015, 26(2): 505-511. [31] Editorial Board of the Vegetation of China. Vegetation of China. Beijing: Science Press, 1980. 中国植被编辑委员会. 中国植被. 北京: 科学出版社, 1980. [32] Zhou Z Q, Li T S, Wu Y P, et al. A study of optimum germination conditions of Stipa bungeana seeds. Pratacultural Science, 2013, 30(2): 218-222. 周芝琴, 李廷山, 武艳培, 等. 长芒草种子适宜萌发条件. 草业科学, 2013, 30(2): 218-222. [33] Hu W, Zhou Q, Li S, et al. Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the Loess Plateau of northwestern China. The Ecological Society of Japan, 2013, 28: 801-809. [34] Sun J H, Wang Y R, Zeng Y J.Characteristics of the soil seed banks in degenerated grasslands under grazing and grazing suspension. Acta Botanica Boreali-occidentalia Sinica, 2005, 25(10): 2035-2042. 孙建华, 王彦荣, 曾彦军. 封育和放牧条件下退化荒漠草地土壤种子库特征. 西北植物学报, 2005, 25(10): 2035-2042. [35] Yang Q H, Song S Q, Ye W H, et al. Mechanism of seed photosensitivity and factors influencing seed photosensitivity. Chinese Bulletin of Botany, 2003, 20(2): 238-247. 杨期和, 宋松泉, 叶万辉, 等. 种子感光的机理及影响种子感光性的因素. 植物学通报, 2003, 20(2): 238-247. [36] Lu P, Sang G, Ma K.Effects of environmental factors on germination and emergence of Crofton weed (Eupatorium adenophorum). Weed Science, 2006, 54: 452-457. [37] Pons L.Induction of dark dormancy in seeds, its importance for the seed bank in the soil. Functional Ecology, 1991, 5: 669-675. [38] Zhang F, Wang Q, Li L.Study on quantitative method of spatial and temporal dynamic monitoring of vegetation cover in Hulunbuir Grassland. Journal of Natural Resources, 2010, 25(10): 1698-1708. 张峰, 王桥, 李营. 呼伦贝尔草原植被覆盖时空动态变化监测定量方法研究.自然资源学报, 2010, 25(10): 1698-1708. [39] Jia Y L.Grassland degradation reasons and establishment of grassland protection long-term mechanism. Chinese Journal of Grassland, 2011, 33(2): 1-6. 贾幼陵. 草原退化原因分析和草原保护长效机制的建立. 中国草地学报, 2011, 33(2): 1-6. |