[1] Song J L.Soil quality characteristics and evaluation on the Loess Plateau. Yangling: Northwest Agriculture and Forestry University, 2010. 宋娟丽. 黄土高原草地土壤质量特征及评价研究. 杨凌: 西北农林科技大学, 2010. [2] Zhang B Q, He C S, Burnham M, et al. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Science of the Total Environment, 2016, 539: 436-449. [3] Liu J G, Diamond J.China’s environment in a globalizing world. Nature, 2005, 435: 1179-1186. [4] Deng L, Shangguan Z P, Rui L I.Effects of the grain-for-green program on soil erosion in China. International Journal of Sediment Research, 2012, 27(1): 120-127. [5] Liu D, Chen Y, Cai W W, et al. The contribution of China’s grain to green program to carbon sequestration. Landscape Ecology, 2014, 29(10): 1675-1688. [6] Wu X Y, Zhang L, Ding Y R, et al. Effect of land use on soil properties in inter-distributing area of farming and pasturing of Keerqin Sandy Land. Journal of Soil and Water Conservation, 2006, 20(4): 116-119. 吴祥云, 张黎, 丁玉荣, 等. 科尔沁沙地农牧交错带土地利用方式对土壤特性的影响. 水土保持学报, 2006, 20(4): 116-119. [7] Chen M L, Zeng Q C, Huang Y M, et al. Effects of the farmland-to-forest grassland conversion program on the soil bacterial community in the Loess Hilly Region. Environmental Science, 2018, 39(4): 1824-1832. 陈孟立, 曾全超, 黄懿梅, 等. 黄土丘陵区退耕还林还草对土壤细菌群落结构的影响. 环境科学, 2018, 39(4): 1824-1832. [8] Lu S Y, Peng W X, Song T Q, et al. Soil microbial properties under different grain-for-green patterns in depressions between karst hills. Acta Ecologica Sinica, 2012, 32(8): 2390-2399. 鹿士杨, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同退耕还林还草模式的土壤微生物特性. 生态学报, 2012, 32(8): 2390-2399. [9] Cui X L, Lei G, Wang T, et al. Impacts of grain for green project on soil erosion in Luohe River Basin of Northern Shanxi Province, China. Research of Soil Water Conservation, 2016, 23(5): 68-73. 崔晓临, 雷刚, 王涛, 等. 退耕还林还草工程实施对洛河流域土壤侵蚀的影响. 水土保持研究, 2016, 23(5): 68-73. [10] Yu Y H, Wu L T Y, A L T T Y. Changes of landscape structure in Horqin Sandy Land based on conversion of cropland to forest or grassland——taking an example of Naiman Banner in Tongliao City. Journal of Inner Mongolia Normal University (Natural Science Edition), 2007, 36(2): 212-216. 于艳华, 乌兰图雅, 阿拉腾图雅. 基于退耕还林还草的科尔沁沙地景观结构变化——以通辽市奈曼旗为例. 内蒙古师范大学学报(自然科学汉文版), 2007, 36(2): 212-216. [11] Dong X.Effects of grain-for-green on soil quality in Huangshui River Basin of Qinghai Province. Bulletin of Soil and Water Conservation, 2011, 31(5): 45-48. 董旭. 青海省湟水河流域不同退耕还林模式土壤效应. 水土保持通报, 2011, 31(5): 45-48. [12] Wang D, Fu B J, Chen L D, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the Loess Hilly areas of the Loess Plateau, China. Acta Ecologica Sinica, 2007, 27(7): 3081-3089. 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例. 生态学报, 2007, 27(7): 3081-3089. [13] Su Y Z, Zhao H L, Zhao W Z, et al. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma, 2004, 122(1): 43-49. [14] Song X Y, Li Y J, Li H Y, et al. Fractal characteristics of soil particle-size distributions under different landform and land-use types. Journal of Northwest A&F University (Natural Science Edition), 2009, 37(9): 155-160. 宋孝玉, 李亚娟, 李怀有, 等. 不同地貌类型及土地利用方式下土壤粒径的分形特征. 西北农林科技大学学报(自然科学版), 2009, 37(9): 155-160. [15] Chen X C, Guo J Y, Dong Z, et al. Effects of different land use types on fractal characteristics of soil in Ulan buh desert along the Yellow River. Journal of Arid Land Resources and Environment, 2015, 29(11): 169-173. 陈新闯, 郭建英, 董智, 等. 乌兰布和沙漠沿黄段不同土地利用类型对土壤分形特征的影响. 干旱区资源与环境, 2015, 29(11): 169-173. [16] Bao S D.Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 1980. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1980. [17] Tyler S W, Wheatcraft S W.Application of fractal mathematics to soil water retention estimation. Science Society of America Journal, 1989, 53(4): 987-996. [18] Houérou H N.Restoration and rehabilitation of arid and semiarid Mediterranean ecosystems in north Africa and west Asia: A review. Arid Soil Research & Rehabilitation, 2000, 14(1): 3-14. [19] Li X R, Zhang Z S, Tan H J, et al. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: Relationship between soil water and carrying capacity for vegetation in the Tengger Desert. China Science: Life Science, 2014, 44(3): 257-266. 李新荣, 张志山, 谭会娟, 等. 我国北方风沙危害区生态重建与恢复: 腾格里沙漠土壤水分与植被承载力的探讨. 中国科学: 生命科学, 2014, 44(3): 257-266. [20] Yang X Y, Shao T J, Zhao J B.Soil moisture content in sand layers of Shapotou area in Tengger Desert during dry season. Bulletin of Soil and Water Conservation, 2016, 36(2): 88-92. 杨晓玉, 邵天杰, 赵景波. 腾格里沙漠沙坡头地区旱季沙层含水量. 水土保持通报, 2016, 36(2): 88-92. [21] Jiang Q, Li S B, Pan Z B, et al. Evaluations on construction of artificial Caragana intermedia to improved effects of degenerated sand land. Journal of Soil & Water Conservation, 2006, (4): 23-27. 蒋齐, 李生宝, 潘占兵, 等. 人工柠条灌木林营造对退化沙地改良效果的评价. 水土保持学报, 2006, (4): 23-27. [22] Zhang W J.Studies on water dynamic and the regional desertification characteristics in Yanchi Sand Land. Beijing: Beijing Forestry University, 2004. [23] Liu S M, Qu X Y, Zhang H S, et al. Effects of tillage managements in wheat-maize crop system on soil physical properties in summer maize season. Acta Agriculturae Boreali-Sinica, 2013, 28(6): 226-232. 刘淑梅, 曲晓燕, 张洪生, 等. 小麦、玉米轮作制度下耕作方式对夏玉米农田土壤物理性状的影响. 华北农学报, 2013, 28(6): 226-232. [24] Su Y Z, Zhao H L.Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China. Ecological Engineering, 2003, 20(3): 223-235. [25] Su Y Z, Zhang T H, Li Y L, et al. Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin Sandy Land, northern China. Environmental Management, 2005, 36(2): 272-281. [26] Sun Y R.Experimental survey for the effects of soil water content and soil salinity on soil electrical conductivity. Journal of China Agricultural University, 2000, 5(4): 39-41. 孙宇瑞. 土壤含水率和盐分对土壤电导率的影响. 中国农业大学学报, 2000, 5(4): 39-41. [27] Han Y, Ma F Y, Xie G L, et al. Spatial heterogeneity of soil electrical conductivity in a mixed plantation of the Yellow River Delta saline land. Science of Soil and Water Conservation, 2014, 12(5): 84-89. 韩跃, 马风云, 解国磊, 等. 黄河三角洲盐碱地混交林土壤电导率的空间异质性. 中国水土保持科学, 2014, 12(5): 84-89. [28] Yuan Q X, Zhu D W, Wu Y J.Coupling effects of temperature, moisture, and nitrogen application on greenhouse soil pH and EC. Chinese Journal of Applied Ecology, 2009, 20(5): 1112-1117. 袁巧霞, 朱端卫, 武雅娟. 温度、水分和施氮量对温室土壤pH及电导率的耦合作用. 应用生态学报, 2009, 20(5): 1112-1117. [29] Zhao J X.Soil acidity and alkalinity and plant growth. Inner Mongolia Agricultural Science and Technology, 2003, (6): 33.赵军霞. 土壤酸碱性与植物的生长. 内蒙古农业科技, 2003, (6): 33. [30] Zhou Z H, Wang C K, Zhang Q Z.The effect of land use change on soil carbon, nitrogen, and phosphorus contents and their stoichiometry in temperate sapling stands in northeastern China. Acta Ecologica Sinica, 2015, 35(20): 6694-6702. 周正虎, 王传宽, 张全智. 土地利用变化对东北温带幼龄林土壤碳氮磷含量及其化学计量特征的影响. 生态学报, 2015, 35(20): 6694-6702. [31] Islam K R, Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture Ecosystems & Environment, 2000, 79(1): 9-16. [32] Liu R T, Zhao H L, Zhao X Y.Effects of different afforestation types on soil faunal diversity in Horqin Sand Land. Chinese Journal of Applied Ecology, 2012, 23(4): 1104-1110. 刘任涛, 赵哈林, 赵学勇. 科尔沁沙地不同造林类型对土壤动物多样性的影响. 应用生态学报, 2012, 23(4): 1104-1110. [33] Guo Y, Zhao H, Zuo X, et al. Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environmental Geology, 2008, 54(3): 653-662. [34] Kaur B, Gupta S R, Singh G.Soil carbon microbial activity and nitrogen availability in agroforestry systems on moderately alkali soils in northern India. Applied Soil Ecology, 2000, 15(3): 283-294. [35] Qi Y B, Huang B, Gu Z Q, et al. Spatial and temporal variation of C/N ratios of agricultural soils in typical area of Yangtze Delta Region and its environmental significance. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, (1): 50-56. 齐雁冰, 黄标, 顾志权, 等. 长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义. 矿物岩石地球化学通报, 2008, (1): 50-56. [36] Zhao H L, Zhou R L, Su Y Z, et al. Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 2007, 31(1): 1-8. [37] Peng W D, Zhang X H, Zhu J N, et al. Effects of different planting density of Caragana korshinskii Kom on soil moisture and forage grass composition in returning farmland to forestland. Ningxia Agriculture and Forestry Science and Technology, 2009, (2): 15-17. 彭文栋, 张秀红, 朱建宁, 等. 退耕还林地柠条不同种植密度对土壤水分及牧草组成的影响研究. 宁夏农林科技, 2009, (2): 15-17. [38] Cang M L, Mu L, Wang X D, et al. Spatial distribution of soil particle size and its correlation with soil moisture in Caragana tibetica community. Acta Ecologiae Animalis Domastici, 2014, 35(9): 23-27. 仓木拉, 木兰, 王晓栋, 等. 西藏锦鸡儿群落表层土壤粒径空间分布特征及其与土壤水分相关性分析. 家畜生态学报, 2014, 35(9): 23-27. [39] Wei M H, Lin H L.Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2014, 25(3): 679-686. 魏茂宏, 林慧龙. 江河源区高寒草甸退化序列土壤颗粒分布及其分形维数. 应用生态学报, 2014, 25(3): 679-686. [40] Gui D W, Lei J Q, Zeng F J, et al. Fractal dimension of particle size distribution and its affecting factors in oasis farmland soils in southern marginal zones of Tarim Basin. Chinese Journal of Eco-Agriculture, 2010, 18(4): 730-735. 桂东伟, 雷加强, 曾凡江, 等. 塔里木盆地南缘绿洲农田土壤颗粒分布分形特征及影响因素研究. 中国生态农业学报, 2010, 18(4): 730-735. [41] Yu J, Lü X, Bin M, et al. Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta. Scientific Reports, 2015, 5: 10540. [42] Bai E, Boutton T W, Liu F, et al. Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biology & Biochemistry, 2012, 44(1): 102-112. [43] Jiang K, Qin H L, Lu Y, et al. Fractal dimension of particle-size distribution for soils derived from different parent materials in Guangdong Province. Journal of Soil and Water Conservation, 2016, 30(6): 319-324. 姜坤, 秦海龙, 卢瑛, 等. 广东省不同母质发育土壤颗粒分布的分形维数特征. 水土保持学报, 2016, 30(6): 319-324. [44] Liu Y, Chen B, Yang X B, et al. Fractal characteristics of soil particles of typical forest in North Mountain of Hebei Province. Journal of Soil and Water Conservation, 2012, 26(3): 159-163. 刘阳, 陈波, 杨新兵, 等. 冀北山地典型森林土壤颗粒分形特征. 水土保持学报, 2012, 26(3): 159-163. [45] Gao G L, Ding G D, Zhao Y Y, et al. Characterization of soil particle size distribution with a fractal model in the Desertified Regions of Northern China. Acta Geophysica, 2016, 64(1): 1-14. |