[1] Chen F P, Han P, Zhang Z Z, et al. Studies on antifungal activity of fungicide 5-(4-chlorophenyl)-2, 3-dimethyl -3-(pyridine-3)-oxazoline against Botrytis cinerea. Chinese Journal of Pesticide Science, 2010, 12(1): 42-48. 陈凤平, 韩平, 张真真, 等. 啶菌噁唑对番茄灰霉病菌的抑菌作用研究. 农药学学报, 2010, 12(1): 42-48. [2] Li B J, Zhu G R, Guan T S, et al. Studies on the epidemic regularities of tomato grey mould disease in energy-saving greenhouse. Plant Protection, 2003, 2(29): 313-325. 李宝聚, 朱国仁, 关天舒, 等. 节能日光温室中番茄灰霉病发生规律的研究. 植物保护, 2003, 2(29): 313-325. [3] Ji J J, Zhang X F, Wang W Q, et al. Research progress on control of tomato gray mold. Chinese Agricultural Science Bulletin. 2012, 28(31): 109-113. 纪军建, 张小风, 王文桥, 等. 番茄灰霉病防治研究进展. 中国农学通报, 2012, 28(31): 109-113. [4] Chen C, Cui T B, Yu P R. Identification of an anti-fungal strain of Amyloliquefaciens Bacillus and the properties of the antifungal substance. Modern Food Science and Technology, 2011, 27(1): 36-39. 陈成, 崔堂兵, 于平儒. 一株抗真菌的解淀粉芽孢杆菌的鉴定及其抗菌性研究. 现代食品科技, 2011, 27(1): 36-39. [5] Zhang S, Wang Y, Meng L, et al. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. African Journal of Microbiology Research, 2012, 6(8): 1747-1755. [6] Chen Z, Huang J, Zhao J, et al. Isolation and identification of pathogenic fungus of Botrytis cinerea and screening of antagonistic bacteria against tomato gray mold. Biotechnology Bulletin, 2017, 33(8): 81-87. 陈哲, 黄静, 赵佳, 等. 番茄灰霉病病原菌分离鉴定及拮抗菌筛选. 生物技术通报, 2017, 33(8): 81-87. [7] Li H X, Zhang D P, Zhao H X, et al. Physical and chemical properties of antimicrobial from bacillus amyloliquefaciens strain MH71 and its inhibition activities against Botrytis cinerea. Chinese Journal of Biological Control, 2016, 32(4): 485-492. 李红晓, 张殿朋, 赵洪新, 等. 解淀粉芽胞杆菌MH71抗菌物质理化特性及对番茄灰霉病菌的抑菌活性. 中国生物防治学报, 2016, 32(4): 485-492. [8] Wang J L, Lu C G, Liu W C, et al. Identification and biological characteristics analysis of bacillus strain QD-10. Chinese Journal of Biological Control, 2014, 30(4): 564-572. 王俊丽, 卢彩鸽, 刘伟成, 等. 一株芽胞杆菌QD-10的鉴定及生防特性分析. 中国生物防治学报, 2014, 30(4): 564-572. [9] Chen X, Koumoutsi A, Scholz R, et al. Comparatuve analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 2007, 25(9): 1007-1014. [10] Yang R X, Ji J H, Wang H Z, et al. Isolation, indentification and inhibitory activity of lipopeptides of endophytic bacteria from the root of Paeonia suffruticosa. Microbiology China, 2015, 42(6): 1081-1088. 杨瑞先, 姬俊华, 王华祖, 等. 牡丹根部内生细菌的分离鉴定及脂肽类物质的拮抗活性研究. 微生物学通报, 2015, 42(6): 1081-1088. [11] Guo J P, Ma G, Wang Z J, et al. Identification and analysis of biocontrol proteins from a strain of Bacillus amyloliquefaciens. Biotechnology Bulletin, 2018, 34(1): 202-207. 郭继平, 马光, 王志杰, 等. 一株解淀粉芽孢杆菌生防蛋白的鉴定及分析. 生物技术通报, 2018, 34(1): 202-207. [12] Yang R X, Tao Y F, Song M X, et al. Inhibition of endophytic bacterial strains isolated from Ginkgo biloba against phytophthora blight of pepper. Chinese Journal of Biological Control, 2012, 28(4): 552-559. 杨瑞先, 陶玉凤, 宋美仙, 等. 银杏内生细菌防治辣椒疫病研究. 中国生物防治学报, 2012, 28(4): 552-559. [13] Yang R X, Song M X, Qiu S X, et al. Screening, identification of biocontrol bacterial strain Hy11 against white radish soft rot and its colonization characteristics. Plant Protection, 2013, 40(2): 109-114. 杨瑞先, 宋美仙, 邱思鑫, 等. 萝卜软腐病生防菌株Hy11的筛选、鉴定及定殖特性. 植物保护学报, 2013, 40(2): 109-114. [14] Fan X J, Huang W, Qiu S X, et al. Isolation and identification of endophytic bacterial strains from Ginkgo biloba and their antimicrobial activities. Microbiology China, 2013, 40(9): 1638-1648. 范晓静, 黄未, 邱思鑫, 等. 银杏内生细菌的分离鉴定及抑菌活性初探. 微生物学通报, 2013, 40(9): 1638-1648. [15] Li C G, Cao C L, Qin S, et al. Identification of an endophytic bacterium XZNUM 033 from Ginkgo biloba L. and its physicochemical characteristic of anti-sapstain fungus activity. Forest Research, 2010, 23(5): 708-712. 李长根, 曹成亮, 秦盛, 等. 银杏内生细菌XZNUM 033的鉴定及其抗杨树变色真菌活性物质的理化性质. 林业科学研究, 2010, 23(5): 708-712. [16] Xu S J, Kim B S. Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology, 2014, 42: 158-166. [17] Kumar R S, Ayyadurai N, Pandiaraja P, et al. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. Journal of Applied Microbiology, 2005, 98(1): 45-54. [18] Dong X Z, Cai M Y. Common bacterial systematic identification manual. Beijing: Science Press, 2001. 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001. [19] Pan H Y, Jin W Y, Zhang X M, et al. Inhibition of antifungal substances from Bacillus amyloquefaciens B15 against Botrytis Cinerea—the agent of “gray mold” of grape. Acta Microbiologica Sinica, 2018, 58(7): 1245-1254. 潘虹余, 金玮鋆, 张晓蒙, 等. 解淀粉芽孢杆菌 B15抑菌物质对葡萄灰霉病灰葡萄孢的抑菌机理. 微生物学报, 2018, 58(7): 1245-1254. [20] Liu C, Liu H W, Wang B Q, et al. Isolation of antifungal substances from Bacillus amyloliquefaciens BA-26 and its antifungal activity against Botrytis cinerea. Biotechnology Bulletin, 2019, 35(7): 22-28. 刘超, 刘洪伟, 汪步青, 等. 解淀粉芽孢杆菌BA-26抗菌物质分离及对灰葡萄孢抑菌作用研究. 生物技术通报, 2019, 35(7): 22-28. [21] Asraful S M, Math R K, Kim J M, et al. Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Current Microbiology, 2010, 61(4): 346-356. [22] Danti R, Sieberr T N, Sanguineti G, et al. Decline in diversity and abundance of endophytic fungi in twigs of Fagus sylvatica L. after experimental long-term exposure to sodium dodecylbenzene sulphonate (SDBS) aerosol. Environmental Microbiology, 2002, 4(11): 696-702. [23] Chun J, Bae K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequence. Antonievan Leeywenhoek, 2000, 78(2): 123-127. [24] Wang L T, Lee F L, Tai C J, et al. Compariosn of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 1846-1850. [25] Yamamoto S, Harayama S. Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Interntional Journal of Systematic Bacteriology, 1998, 48: 813-819. [26] Klein T A, Burgess L W, Ellison F W. The incidence and spatial patterns of wheat plants infectd by Fusariym graminearum group land the effect of crown roton yield. Australian Journal of Agricultural Research, 1991, 42(3): 399-407. [27] Yang L M, Tong Z H, Guo L H, et al. Screening, identification and biocontrol effects of antagonistic bacterial strain CQ against Botrytis cinerea from tomato. Chinese Journal of Biological Control, 2015, 31(6): 956-960. 杨利敏, 仝赞华, 郭立华, 等. 番茄灰霉生防菌CQ的分子鉴定及其生防效果研究. 中国生物防治学报, 2015, 31(6): 956-960. [28] Zhang Y X, Li G, Zhang G M. Colonization of antagonistic strains of tomato leaf in green house and their effects on gray mold (Botrytis cinerea). Acta Phytopathologica Sinica, 2000, 30(1): 91. 张玉勋, 李光, 张光明. 拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果. 植物病理学报, 2000, 30(1): 91. |