草业学报 ›› 2021, Vol. 30 ›› Issue (11): 98-107.DOI: 10.11686/cyxb2020420
刘枭宏(), 谌芸(), 颜哲豪, 唐菡, 强娇娇, 齐越, 都艺芝
收稿日期:
2020-09-14
修回日期:
2021-01-27
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
谌芸
作者简介:
Corresponding author. E-mail: sy22478@126.com基金资助:
Xiao-hong LIU(), Yun CHEN(), Zhe-hao YAN, Han TANG, Jiao-jiao QIANG, Yue QI, Yi-zhi DU
Received:
2020-09-14
Revised:
2021-01-27
Online:
2021-10-19
Published:
2021-10-19
Contact:
Yun CHEN
摘要:
为探索草篱在紫色土坡地的水土保持价值及其根系固土的力学性能特征,在重庆市北碚区“西南大学紫色丘陵区坡耕地水土流失监测基地”种植了2种草篱(紫花苜蓿和拉巴豆),定量研究了草篱根系形态、纤维含量、抗拉特性以及根-土复合体的抗剪/冲性能,明确了根系对其根-土复合体抗剪/冲性能的影响及主要影响因素。结果表明:1)紫花苜蓿和拉巴豆根-土复合体中有超过90%的根系直径小于1.0 mm,紫花苜蓿根系的纤维含量较高,拉巴豆根系的根长密度、根表面积密度、根体积密度较优;2)同一径级下根系平均极限抗拉力和抗拉强度均表现为拉巴豆(19.76 N,32.70 MPa)>紫花苜蓿(14.32 N,26.66 MPa)。极限抗拉力与根系直径呈幂函数正相关,抗拉强度与根系直径呈幂函数负相关;3)2种草篱根系均能显著提高根-土复合体的粘聚力和抗冲指数(P<0.05),尤其是拉巴豆。拉巴豆根-土复合体平均粘聚力达22.88 kPa,较对照提高了71.06%,最大抗冲指数达19.00 L·g-1,是对照的2.60倍;4)主成分分析表明根系通过根长密度、半纤维素含量以及极限抗拉力来影响根-土复合体的抗剪/冲性能,拉巴豆草篱根-土复合体抗剪/冲性能的综合得分均高于紫花苜蓿草篱。综上,紫色土坡地上拉巴豆草篱根-土复合体抗剪/冲性能显著优于紫花苜蓿草篱。
刘枭宏, 谌芸, 颜哲豪, 唐菡, 强娇娇, 齐越, 都艺芝. 紫色土区草篱根系对其根-土复合体抗剪和抗冲性能的影响[J]. 草业学报, 2021, 30(11): 98-107.
Xiao-hong LIU, Yun CHEN, Zhe-hao YAN, Han TANG, Jiao-jiao QIANG, Yue QI, Yi-zhi DU. The effects of grass hedgerow roots on shear strength and scouring resistance of root-soil complexes in the purple soil region[J]. Acta Prataculturae Sinica, 2021, 30(11): 98-107.
试验名称 Test category | 草篱种类 Grasses hedgerows | 根系直径 Root diameter (mm) | 根长密度 Root length density (×10-3 cm·cm-3) | 根表面积密度 Root surface area density (×10-3 cm2·cm-3) | 根体积密度 Root volume density (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 553.34±18.33Aa | 17.28±0.12Bb | 0.56±0.02Ba |
1.0<d≤2.0 | 23.96±12.52Bb | 10.06±1.11Bb | 0.35±0.03Bb | ||
d>2.0 | 7.88±13.25Cb | 40.62±5.58Aa | 1.57±0.03Ab | ||
总体指标 Sum | 585.51±19.66b | 68.18±4.32b | 2.47±1.38b | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 565.54±18.99Aa | 86.65±2.35Aa | 0.48±0.08Cb | |
1.0<d≤2.0 | 78.21±15.77Ba | 36.28±4.32Ba | 1.39±0.07Ba | ||
d>2.0 | 81.09±16.54Ba | 46.28±1.97Ba | 3.04±1.36Aa | ||
总体指标 Sum | 725.04±15.33a | 169.78±4.39a | 4.97±1.38a | ||
抗冲 Impact resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 452.01±25.33Aa | 29.68±7.25Ab | 0.24±0.02Cb |
1.0<d≤2.0 | 18.45±2.36Ba | 8.72±1.11Ba | 0.34±0.05Ba | ||
d>2.0 | 34.74±6.78Ba | 34.46±5.52Aa | 0.49±0.04Aa | ||
总体指标 Sum | 505.34±20.19a | 81.75±6.63a | 1.05±0.05a | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 405.97±34.69Ab | 35.76±4.21Aa | 0.40±0.06Aa | |
1.0<d≤2.0 | 19.79±3.55Ba | 8.63±2.56Ca | 0.31±0.03Ba | ||
d>2.0 | 20.40±4.23Bb | 25.51±3.34Bb | 0.40±0.02Aa | ||
总体指标 Sum | 446.42±31.22a | 77.67±5.21a | 1.08±0.04a |
表1 复合体中根系形态指标
Table 1 Whole diameter root parameters of root-soil complex
试验名称 Test category | 草篱种类 Grasses hedgerows | 根系直径 Root diameter (mm) | 根长密度 Root length density (×10-3 cm·cm-3) | 根表面积密度 Root surface area density (×10-3 cm2·cm-3) | 根体积密度 Root volume density (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 553.34±18.33Aa | 17.28±0.12Bb | 0.56±0.02Ba |
1.0<d≤2.0 | 23.96±12.52Bb | 10.06±1.11Bb | 0.35±0.03Bb | ||
d>2.0 | 7.88±13.25Cb | 40.62±5.58Aa | 1.57±0.03Ab | ||
总体指标 Sum | 585.51±19.66b | 68.18±4.32b | 2.47±1.38b | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 565.54±18.99Aa | 86.65±2.35Aa | 0.48±0.08Cb | |
1.0<d≤2.0 | 78.21±15.77Ba | 36.28±4.32Ba | 1.39±0.07Ba | ||
d>2.0 | 81.09±16.54Ba | 46.28±1.97Ba | 3.04±1.36Aa | ||
总体指标 Sum | 725.04±15.33a | 169.78±4.39a | 4.97±1.38a | ||
抗冲 Impact resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 452.01±25.33Aa | 29.68±7.25Ab | 0.24±0.02Cb |
1.0<d≤2.0 | 18.45±2.36Ba | 8.72±1.11Ba | 0.34±0.05Ba | ||
d>2.0 | 34.74±6.78Ba | 34.46±5.52Aa | 0.49±0.04Aa | ||
总体指标 Sum | 505.34±20.19a | 81.75±6.63a | 1.05±0.05a | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 405.97±34.69Ab | 35.76±4.21Aa | 0.40±0.06Aa | |
1.0<d≤2.0 | 19.79±3.55Ba | 8.63±2.56Ca | 0.31±0.03Ba | ||
d>2.0 | 20.40±4.23Bb | 25.51±3.34Bb | 0.40±0.02Aa | ||
总体指标 Sum | 446.42±31.22a | 77.67±5.21a | 1.08±0.04a |
图1 复合体中根系纤维含量L: Lignin. C: Cellulose. He: Hemicelluloses. WFR: Wood fiber ratio. 不同小写字母表示不同草篱存在显著差异(P<0.05),n=3。Different small letters indicate that there is significant difference at the same index between different hedgerows (P<0.05), n=3.
Fig.1 Chemical composition contents of root-soil complex
图2 单根抗拉特性不同大写字母表示同一指标不同径级间存在显著差异(P<0.05), 不同小写字母表示同一指标不同草篱存在显著差异(P<0.05),n=3。Different capital letters indicate that there is significant difference between the same index among different diameter classes (P<0.05), different small letters indicate that there is significant difference at the same index between different hedgerows (P<0.05), n=3.
Fig.2 Root tensile properties
处理 Treatments | 竖直荷载Vertical load (kPa) | 内摩擦角 Internal friction angle(°) | 粘聚力 Cohesion (kPa) | |||
---|---|---|---|---|---|---|
100 kPa | 200 kPa | 300 kPa | 400 kPa | |||
对照Blank control | 55.10±3.32c | 100.52±7.74c | 136.33±10.14c | 183.17±20.31c | 22.78±2.57c | 13.38±1.22b |
紫花苜蓿M. sativa | 71.59±2.64b | 116.34±9.10b | 168.39±5.27b | 219.41±16.39b | 26.10±2.33b | 20.06±2.35ab |
拉巴豆D. lablab | 75.11±6.93a | 131.22±4.11a | 183.29±13.11a | 235.69±17.21a | 28.37±0.97a | 22.88±0.92a |
表2 对照土体和草篱根-土复合体的抗剪强度及其指标
Table 2 Shear strength of CK and grass hedgerows root-soil complex
处理 Treatments | 竖直荷载Vertical load (kPa) | 内摩擦角 Internal friction angle(°) | 粘聚力 Cohesion (kPa) | |||
---|---|---|---|---|---|---|
100 kPa | 200 kPa | 300 kPa | 400 kPa | |||
对照Blank control | 55.10±3.32c | 100.52±7.74c | 136.33±10.14c | 183.17±20.31c | 22.78±2.57c | 13.38±1.22b |
紫花苜蓿M. sativa | 71.59±2.64b | 116.34±9.10b | 168.39±5.27b | 219.41±16.39b | 26.10±2.33b | 20.06±2.35ab |
拉巴豆D. lablab | 75.11±6.93a | 131.22±4.11a | 183.29±13.11a | 235.69±17.21a | 28.37±0.97a | 22.88±0.92a |
图3 对照土体和草篱根-土复合体抗冲指数的动态变化x为冲刷时间(min);y1为拉巴豆复合体抗冲指数(L·g-1);y2为紫花苜蓿复合体抗冲指数(L·g-1);y3为CK抗冲指数(L·g-1)。x is scour time (min); y1 is D. lablab complex anti-scourability (L·g-1); y2 is M. sativa combined anti-scourability (L·g-1); y3 is CK anti-scourability (L·g-1).
Fig.3 Dynamic changes of anti-scourability in root-soil complex and CK
试验名称 Test category | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|---|---|---|
抗剪 Shear resistance | F1 | 5.057 | 63.212 | 0.945 | 0.241 | -0.733 | -0.966 | 0.845 | -0.882 | 0.951 | 0.488 |
F2 | 1.702 | 21.275 | 0.091 | 0.915 | 0.220 | 0.133 | 0.328 | 0.226 | 0.282 | -0.743 | |
抗冲 Impact resistance | F1 | 4.207 | 52.583 | 0.951 | 0.293 | -0.629 | -0.945 | 0.814 | 0.149 | 0.914 | 0.638 |
F2 | 1.691 | 21.138 | 0.289 | 0.885 | 0.690 | 0.068 | -0.057 | 0.196 | 0.301 | -0.460 | |
F3 | 1.371 | 17.137 | -0.086 | -0.344 | -0.087 | -0.043 | 0.385 | 0.896 | -0.022 | -0.533 |
表3 主成分分析因子载荷矩阵和方差贡献率
Table 3 The factor load matrix after principal component analysis and the variance contribution rate
试验名称 Test category | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|---|---|---|
抗剪 Shear resistance | F1 | 5.057 | 63.212 | 0.945 | 0.241 | -0.733 | -0.966 | 0.845 | -0.882 | 0.951 | 0.488 |
F2 | 1.702 | 21.275 | 0.091 | 0.915 | 0.220 | 0.133 | 0.328 | 0.226 | 0.282 | -0.743 | |
抗冲 Impact resistance | F1 | 4.207 | 52.583 | 0.951 | 0.293 | -0.629 | -0.945 | 0.814 | 0.149 | 0.914 | 0.638 |
F2 | 1.691 | 21.138 | 0.289 | 0.885 | 0.690 | 0.068 | -0.057 | 0.196 | 0.301 | -0.460 | |
F3 | 1.371 | 17.137 | -0.086 | -0.344 | -0.087 | -0.043 | 0.385 | 0.896 | -0.022 | -0.533 |
试验名称 Test category | 草篱种类 Grasses hedgerows | F1 | F2 | F3 | F |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿M. sativa | 2.733 | -1.783 | / | 1.348 |
拉巴豆D. lablab | 2.804 | 1.921 | / | 2.181 | |
抗冲 Impact resistance | 紫花苜蓿M. sativa | 2.947 | -0.488 | -0.886 | 1.295 |
拉巴豆D. lablab | 2.093 | 1.507 | 0.733 | 1.545 |
表4 复合体抗剪/冲性能主成分得分及综合评分
Table 4 The principal component score and comprehensive score of shear strength and anti-scourability for root-soil complex
试验名称 Test category | 草篱种类 Grasses hedgerows | F1 | F2 | F3 | F |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿M. sativa | 2.733 | -1.783 | / | 1.348 |
拉巴豆D. lablab | 2.804 | 1.921 | / | 2.181 | |
抗冲 Impact resistance | 紫花苜蓿M. sativa | 2.947 | -0.488 | -0.886 | 1.295 |
拉巴豆D. lablab | 2.093 | 1.507 | 0.733 | 1.545 |
1 | Li J Q, Zhang H J, Cheng J H, et al. Soil physical properties of different hedgerow systems in upper reaches of Yangtze River. Chinese Journal of Applied Ecology, 2011, 22(2): 418-424. |
黎建强, 张洪江, 程金花, 等. 长江上游不同植物篱系统的土壤物理性质. 应用生态学报, 2011, 22(2): 418-424. | |
2 | Guo T, He B H, Jiang X J, et al. Effect of Leucaena leucocephala on soil organic carbon conservation on slope in the purple soil area. Acta Ecologica Sinica, 2012, 32(1): 190-197. |
郭甜, 何丙辉, 蒋先军, 等. 新银合欢篱对紫色土坡地土壤有机碳固持的作用. 生态学报, 2012, 32(1): 190-197. | |
3 | Zhai T T, Chen Y, Li T, et al. Comparative study on soil water reservoirs and shear strength between the sedimentation zone in front of and ridge behind hedgerows. Acta Ecologica Sinica, 2020, 40(2): 599-607. |
翟婷婷, 谌芸, 李铁, 等. 植物篱篱前淤积带与篱下土坎土壤水库和抗剪性能对比研究. 生态学报, 2020, 40(2): 599-607. | |
4 | Zhou P, Wen A B, Yan D C, et al. The mechanics of soil reinforcement by root on the hedge of the sloping cultivated lands of purple soils in the three gorges reservoir region. Journal of Soil and Water Conservation, 2017, 31(1): 85-90. |
周萍, 文安邦, 严冬春, 等. 三峡库区紫色土坡耕地草本植物根系固结地埂的土力学机制. 水土保持学报, 2017, 31(1): 85-90. | |
5 | Ding W B, He W J, Shi D M, et al. Effect of drying-wetting condition on attenuation-recovery of soil shear strength of bio-embankment on sloping farmland comprising purple soil. Acta Prataculturae Sinica, 2017, 26(6): 56-67. |
丁文斌, 何文健, 史东梅, 等. 干湿作用对紫色土坡耕地生物埂土壤抗剪强度衰减—恢复效应. 草业学报, 2017, 26(6): 56-67. | |
6 | Tang H, Chen Y, Liu X H, et al. Study on the mechanic features of root and root-soil matrix of Dolichos lablab hedgerows on the slopes of the Karst area. Acta Ecologica Sinica, 2019, 39(16): 6114-6125. |
唐菡, 谌芸, 刘枭宏, 等. 喀斯特坡地拉巴豆草篱根及根-土复合体力学特性. 生态学报, 2019, 39(16): 6114-6125. | |
7 | Osman N, Abdullah M N, Abdullah C H. Pull-out and tensile strength properties of two selected tropical trees. Sains Malaysiana, 2011, 40(6): 577-585. |
8 | Giadrossich F, Schwarz M, Cohen D, et al. Mechanical interactions between neighbouring roots during pullout rests. Plant and Soil, 2013, 367: 391-406. |
9 | Zhou T, Chen Y, Wang R Z, et al. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究. 草业学报, 2019, 28(3): 62-73. | |
10 | Li T, Wang R Z, Chen Y, et al. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
李铁, 王润泽, 谌芸, 等. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响. 草业学报, 2018, 27(2): 69-78. | |
11 | Boldrin D, Leung A K, Bengough A G. Root biomechanical properties during establishment of woody perennials. Ecological Engineering, 2017, 109: 196-206. |
12 | Li J, Wang X, Jia H X, et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region. Acta Ecologica Sinica, 2019, 39(14) : 5117-5126. |
李佳, 汪霞, 贾海霞, 等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响. 生态学报, 2019, 39(14): 5117-5126. | |
13 | Wang R Z, Chen Y, Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effects on the anti erodibility of purple soil in slope lands. Acta Prataculturae Sinica, 2017, 26(7): 45-54. |
王润泽, 谌芸, 李铁, 等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响. 草业学报, 2017, 26(7): 45-54. | |
14 | Xu W X, Bao Y H, Wei J, et al. Impacts of the typical herbaceous plant roots on soil scour resistance in the reservoir riparian zone. Journal of Soil and Water Conservation, 2019, 33(4): 65-71, 109. |
徐文秀, 鲍玉海, 韦杰, 等. 水库消落带典型草本植物根系对土壤抗冲性能的影响. 水土保持学报, 2019, 33(4): 65-71, 109. | |
15 | Liu Z, Yang R, Pei Y D. Soil erosion resistance characteristics of Zanthoxylum bungeanum and Lonicera japonica forest land in canyon areas of Karst plateau. Acta Pedologica Sinica, 2019, 56(2): 466-474. |
刘志, 杨瑞, 裴仪岱. 喀斯特高原峡谷区顶坛花椒与金银花林地土壤抗侵蚀特征. 土壤学报, 2019, 56(2): 466-474. | |
16 | Baum W. Root system research method. Xue D R, Tan X L, translate. Beijing: Science Press, 1985: 231. |
伯姆 W. 根系研究法. 薛德榕, 谭协麟, 译. 北京: 科学出版社, 1985: 231. | |
17 | Chen Y, He B H, Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. |
谌芸, 何丙辉, 练彩霞, 等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. | |
18 | Li H S. Experimental principle and techniques for plant physiology and biochemistry. Beijing: Higher Education Press, 2000: 211-212. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 211-212. | |
19 | Lv C J, Chen L H. Relationship between root tensile mechanical properties and its main chemical components of tipical tree species in North China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 69-78. |
吕春娟, 陈丽华. 华北典型植被根系抗拉力学特性及其与主要化学成分关系. 农业工程学报, 2013, 29(23): 69-78. | |
20 | Makhlouf M, Aboul-Ezz A, Fayed M S, et al. Evaluating the amount of tooth movement and root resorption during canine retraction with friction versus frictionless mechanics using cone beam computed tomography. Open Access Macedonian Journal of Medical Sciences, 2018, 6(2): 384-388. |
21 | Zhun M, Yan W, Luke M C M, et al. Mechanical traits of fine roots as a function of topology and anatomy. Annals of Botany, 2018, 122(7): 1103-1116. |
22 | Ye C, Guo Z L, Cai C F, et al. Relationship between root tensile mechanical properties and main chemical components of five herbaceous specics. Pratacultural Science, 2017, 34(3): 598-606. |
叶超, 郭忠录, 蔡崇法, 等. 5种草本植物根系理化特性及其相关性. 草业科学, 2017, 34(3): 598-606. | |
23 | Zhang C B, Chen L H, Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology, 2014, 206: 196-202. |
24 | Mao Z, Jourdan C, Bonis M L, et al. Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis. Plant and Soil, 2013, 363(1/2): 357-382. |
25 | Li J X, He B H, Chen Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration. Acta Ecologica Sinica, 2013, 33(5): 1535-1544. |
李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响. 生态学报, 2013, 33(5): 1535-1544. | |
26 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
27 | Yang Y M, Zheng Z C, Li T X. Soil anti-scourability dynamic variation characteristics and its influencing factors under different land use types. Journal of Soil and Water Conservation, 2010, 24(4): 64-68. |
杨玉梅, 郑子成, 李廷轩. 不同土地利用方式下土壤抗冲性动态变化特征及其影响因素. 水土保持学报, 2010, 24(4): 64-68. |
[1] | 李亚娇, 马培杰, 吴佳海, 牟琼, 覃涛英, 王晓强, 马宁, 张蓉, 李德芳, 朗永祥, 吴有松, 田应学, 韩永芬. 不同品种青贮玉米与拉巴豆套种对青贮玉米农艺性状及产量的影响[J]. 草业学报, 2019, 28(9): 209-216. |
[2] | 周涛, 谌芸, 王润泽, 李铁, 唐菡, 翟婷婷, 刘枭宏. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究[J]. 草业学报, 2019, 28(3): 62-73. |
[3] | 王亚麒, 袁玲. 甜高粱、高丹草和拉巴豆对难溶性磷的活化与吸收[J]. 草业学报, 2019, 28(10): 33-43. |
[4] | 王润泽, 谌芸, 李铁, 彭石磊, 刘志鹏, 单志杰. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响[J]. 草业学报, 2017, 26(7): 45-54. |
[5] | 丁文斌, 何文健, 史东梅, 蒋光毅, 蒋平, 常松果. 干湿作用对紫色土坡耕地生物埂土壤抗剪强度衰减-恢复效应[J]. 草业学报, 2017, 26(6): 56-67. |
[6] | 王润泽, 谌芸, 李铁, 周涛, 何丙辉, 刘枭宏, 刘志鹏, 单志杰. PAM和草类根系对荒坡侵蚀劣地紫色土微团聚体的影响[J]. 草业学报, 2017, 26(12): 13-23. |
[7] | 谌芸, 何丙辉, 练彩霞, 刘志鹏. 紫色土区3种草本植物根系特征及改土培肥效应[J]. 草业学报, 2015, 24(10): 99-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||