草业学报 ›› 2023, Vol. 32 ›› Issue (10): 1-14.DOI: 10.11686/cyxb2022488
• 研究论文 •
许政勇1(), 孙斌2,3(), 张王菲1, 李毅夫2,3, 闫紫钰2,3, 岳巍2,3, 滕思翰2,3,4
收稿日期:
2022-12-13
修回日期:
2023-01-16
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
孙斌
作者简介:
E-mail: sunbin@ifrit.ac.cn基金资助:
Zheng-yong XU1(), Bin SUN2,3(), Wang-fei ZHANG1, Yi-fu LI2,3, Zi-yu YAN2,3, Wei YUE2,3, Si-han TENG2,3,4
Received:
2022-12-13
Revised:
2023-01-16
Online:
2023-10-20
Published:
2023-07-26
Contact:
Bin SUN
摘要:
灌丛化已经成为草原生态系统中重要的生态问题,而灌丛化草原植被地上生物量(AGB)的精细化估测对于开展区域生态系统碳循环研究有着重要的科学意义。受土壤背景噪声和植被生长结构特征差异的双重影响,现有常见植被指数在灌丛化草原区域构建AGB估算模型时表现极不稳定。针对这一问题,基于Sentinel-2遥感数据,通过优化三角形植被指数(TVI)开展灌丛化草原植被AGB遥感估测方法研究。研究结果表明:1)在以草本植被为主的区域中,基于绿
许政勇, 孙斌, 张王菲, 李毅夫, 闫紫钰, 岳巍, 滕思翰. 基于优化三角形植被指数(TVI)的灌丛化草原植被地上生物量遥感估测方法研究[J]. 草业学报, 2023, 32(10): 1-14.
Zheng-yong XU, Bin SUN, Wang-fei ZHANG, Yi-fu LI, Zi-yu YAN, Wei YUE, Si-han TENG. An evaluation of a remote sensing method based on optimized triangular vegetation index (TVI) for aboveground shrub biomass estimation in shrub-encroached grassland[J]. Acta Prataculturae Sinica, 2023, 32(10): 1-14.
图1 研究区位置及样点分布植被类型数据来源于“国家青藏高原科学数据中心”(http://data.tpdc.ac.cn)的1∶100万中国植被图。The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn), 1∶1 million vegetation map of China.
Fig.1 Study area location and sample distribution
图3 TVI构建理论A、B、C、D1和D2分别表示波长为550、670、750、740和842 nm时植被的反射率。A, B, C, D1 and D2 represent the reflectance of vegetation at wavelengths 550, 670, 750, 740 and 842 nm respectively.
Fig.3 Schematic diagram of triangular vegetation index (TVI) construction
TVI组合Triangular vegetation index (TVI) combination | 计算公式Formula |
---|---|
绿、红和红边组合Green, red and red-edge combination | |
绿、红和近红组合Green, red and near-infrared combination | |
绿、红边和近红组合Green, red-edge and near-infrared combination |
表1 TVI计算公式
Table 1 Formula for calculating TVI
TVI组合Triangular vegetation index (TVI) combination | 计算公式Formula |
---|---|
绿、红和红边组合Green, red and red-edge combination | |
绿、红和近红组合Green, red and near-infrared combination | |
绿、红边和近红组合Green, red-edge and near-infrared combination |
植被指数 Vegetation index | 计算公式 Formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized vegetation index (NDVI) | [ | |
差值植被指数Difference vegetation index (DVI) | [ | |
比值植被指数Rational vegetation index (RVI) | [ | |
增强型植被指数Enhanced vegetation index (EVI) | [ | |
绿色归一化植被指数Green normalized difference vegetative index (GNDVI) | [ | |
绿色叶绿素指数Green chlorophyll index (CIgreen) | [ | |
归一化差异红外指数Normalized difference infrared index (NDII) | [ | |
优化土壤调节植被指数Optimized soil adjusted vegetation index (OSAVI) | [ | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | [ | |
修正土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | [ | |
绿红植被指数Green red vegetation index (GRVI) | [ | |
全球植被湿度指数Global vegetation moisture index (GVMI) | [ |
表2 植被指数计算公式
Table 2 Vegetation index formula
植被指数 Vegetation index | 计算公式 Formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized vegetation index (NDVI) | [ | |
差值植被指数Difference vegetation index (DVI) | [ | |
比值植被指数Rational vegetation index (RVI) | [ | |
增强型植被指数Enhanced vegetation index (EVI) | [ | |
绿色归一化植被指数Green normalized difference vegetative index (GNDVI) | [ | |
绿色叶绿素指数Green chlorophyll index (CIgreen) | [ | |
归一化差异红外指数Normalized difference infrared index (NDII) | [ | |
优化土壤调节植被指数Optimized soil adjusted vegetation index (OSAVI) | [ | |
土壤调节植被指数Soil adjusted vegetation index (SAVI) | [ | |
修正土壤调节植被指数Modified soil adjusted vegetation index (MSAVI) | [ | |
绿红植被指数Green red vegetation index (GRVI) | [ | |
全球植被湿度指数Global vegetation moisture index (GVMI) | [ |
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 7.62 | 沙质地表,有零星天然草本植被覆盖。Sandy surface with scattered natural herbaceous vegetation. |
样区2 Sample area 2 | 26×26 | 29.83 | 沙质地表,稀疏天然草本植被覆盖。Sandy surface, sparsely covered by natural herbaceous vegetation. |
样区3 Sample area 3 | 26×26 | 35.76 | 不均匀天然草本植被覆盖,有少量裸露地表。Uneven natural herb vegetation coverage, with a small amount of bare ground. |
样区4 Sample area 4 | 26×26 | 51.52 | 3/4均匀天然草本植被覆盖,1/4不均匀少量裸露地表覆盖。3/4 uniform natural herbaceous vegetation coverage, 1/4 uneven small amount of bare ground coverage. |
样区5 Sample area 5 | 26×26 | 69.22 | 人工草本植被覆盖为主,分布不均匀,且有大量空隙。Artificial herbaceous vegetation is mainly covered, with uneven distribution and a large number of gaps. |
样区6 Sample area 6 | 26×26 | 84.87 | 人工草本植被覆盖为主,且有少量不均匀空隙。Artificial herbaceous vegetation is mainly covered with a small amount of uneven gaps. |
表3 草本植被样区大小及植被覆盖情况
Table 3 Characteristics of vegetation and herbaceous sample area size
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 7.62 | 沙质地表,有零星天然草本植被覆盖。Sandy surface with scattered natural herbaceous vegetation. |
样区2 Sample area 2 | 26×26 | 29.83 | 沙质地表,稀疏天然草本植被覆盖。Sandy surface, sparsely covered by natural herbaceous vegetation. |
样区3 Sample area 3 | 26×26 | 35.76 | 不均匀天然草本植被覆盖,有少量裸露地表。Uneven natural herb vegetation coverage, with a small amount of bare ground. |
样区4 Sample area 4 | 26×26 | 51.52 | 3/4均匀天然草本植被覆盖,1/4不均匀少量裸露地表覆盖。3/4 uniform natural herbaceous vegetation coverage, 1/4 uneven small amount of bare ground coverage. |
样区5 Sample area 5 | 26×26 | 69.22 | 人工草本植被覆盖为主,分布不均匀,且有大量空隙。Artificial herbaceous vegetation is mainly covered, with uneven distribution and a large number of gaps. |
样区6 Sample area 6 | 26×26 | 84.87 | 人工草本植被覆盖为主,且有少量不均匀空隙。Artificial herbaceous vegetation is mainly covered with a small amount of uneven gaps. |
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 6.04 | 沙质地表,有零星灌丛覆盖。Sandy surface, covered by scattered shrubs. |
样区2 Sample area 2 | 26×26 | 12.58 | 沙质地表,少量不均匀灌丛覆盖。Sandy surface, covered by a small amount of uneven shrubs. |
样区3 Sample area 3 | 26×26 | 15.58 | 1/2沙质地表,1/2不均匀灌丛覆盖。1/2 sandy surface, 1/2 uneven shrub coverage. |
样区4 Sample area 4 | 26×26 | 19.42 | 3/4不均匀灌丛覆盖,1/4不均匀灌草混合覆盖。3/4 uneven shrub coverage, 1/4 uneven shrub grass mixed coverage. |
样区5 Sample area 5 | 26×26 | 24.92 | 分布较均匀的灌丛覆盖为主,掺杂少量草本植被覆盖,且有大量空隙。It is mainly covered by bushes with relatively uniform distribution, mixed with a small amount of herbaceous vegetation, and has a large number of gaps. |
样区6 Sample area 6 | 26×26 | 33.09 | 分布较均匀的灌草混合分布,且有少量空隙。Evenly distributed shrubs and grasses are mixed with a small amount of gaps. |
表4 灌丛植被样区大小及植被覆盖情况
Table 4 Characteristics of vegetation and shrubs sample area size
研究区 Study area | 窗口大小(像元数) Window size (pixel number) | 植被覆盖度 Vegetation coverage (%) | 地表植被特点 Characteristics of vegetation |
---|---|---|---|
样区1 Sample area 1 | 26×26 | 6.04 | 沙质地表,有零星灌丛覆盖。Sandy surface, covered by scattered shrubs. |
样区2 Sample area 2 | 26×26 | 12.58 | 沙质地表,少量不均匀灌丛覆盖。Sandy surface, covered by a small amount of uneven shrubs. |
样区3 Sample area 3 | 26×26 | 15.58 | 1/2沙质地表,1/2不均匀灌丛覆盖。1/2 sandy surface, 1/2 uneven shrub coverage. |
样区4 Sample area 4 | 26×26 | 19.42 | 3/4不均匀灌丛覆盖,1/4不均匀灌草混合覆盖。3/4 uneven shrub coverage, 1/4 uneven shrub grass mixed coverage. |
样区5 Sample area 5 | 26×26 | 24.92 | 分布较均匀的灌丛覆盖为主,掺杂少量草本植被覆盖,且有大量空隙。It is mainly covered by bushes with relatively uniform distribution, mixed with a small amount of herbaceous vegetation, and has a large number of gaps. |
样区6 Sample area 6 | 26×26 | 33.09 | 分布较均匀的灌草混合分布,且有少量空隙。Evenly distributed shrubs and grasses are mixed with a small amount of gaps. |
TVI组合 TVI combination | 描述 Description | 决定系数Coefficient of determination (R2) | |
---|---|---|---|
草本植被Herbaceous vegetation | 灌丛植被Shrub vegetation | ||
绿、红和红边组合 Green, red and red-edge combination | TVI ( | 0.376 | 0.175 |
TVI ( | 0.571 | 0.088 | |
TVI ( | 0.423 | 0.088 | |
绿、红和近红组合 Green, red and near-infrared combination | TVI ( | 0.616 | 0.053 |
TVI ( | 0.468 | 0.098 | |
绿、红边和近红组合 Green, red-edge and near-infrared combination | TVI ( | 0.623 | 0.029 |
TVI ( | 0.684 | 0.032 | |
TVI ( | 0.048 | 0.299 | |
TVI ( | 0.033 | 0.042 | |
TVI ( | 0.327 | 0.368 | |
TVI ( | 0.316 | 0.054 |
表5 不同TVI组合与草本植被、灌丛植被地上生物量线性拟合
Table 5 The aboveground biomass of herbaceous vegetation and shrub vegetation was linearly fitted with different TVI combinations
TVI组合 TVI combination | 描述 Description | 决定系数Coefficient of determination (R2) | |
---|---|---|---|
草本植被Herbaceous vegetation | 灌丛植被Shrub vegetation | ||
绿、红和红边组合 Green, red and red-edge combination | TVI ( | 0.376 | 0.175 |
TVI ( | 0.571 | 0.088 | |
TVI ( | 0.423 | 0.088 | |
绿、红和近红组合 Green, red and near-infrared combination | TVI ( | 0.616 | 0.053 |
TVI ( | 0.468 | 0.098 | |
绿、红边和近红组合 Green, red-edge and near-infrared combination | TVI ( | 0.623 | 0.029 |
TVI ( | 0.684 | 0.032 | |
TVI ( | 0.048 | 0.299 | |
TVI ( | 0.033 | 0.042 | |
TVI ( | 0.327 | 0.368 | |
TVI ( | 0.316 | 0.054 |
图4 不同Ⅵ获取植被信息时的土壤噪声2δ随植被覆盖度的变化关系CIgreen: 绿色叶绿素指数Green chlorophyll index; DVI: 差值植被指数Difference vegetation index; EVI: 增强型植被指数Enhanced vegetation index; GNDVI: 绿色归一化植被指数Green normalized difference vegetative index; GRVI: 绿红植被指数Green red vegetation index; GVMI: 全球植被湿度指数Global vegetation moisture index; MSAVI: 修正土壤调节植被指数Modified soil adjusted vegetation index; OSAVI: 优化土壤调节植被指数Optimized soil adjusted vegetation index; RVI: 比值植被指数Rational vegetation index; SAVI: 土壤调节植被指数Soil adjusted vegetation index; NDII: 归一化差异红外指数Normalized difference infrared index; NDVI: 归一化植被指数Normalized vegetation index.
Fig.4 Variation of soil noises 2σ in extracting vegetation information with the vegetation coverage
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 178.964 | 0.000 | 0.773 | 41.083 | |
绿色叶绿素指数CIgreen | 48.036 | 0.000 | 0.461 | 64.608 | |
差值植被指数DVI | 41.271 | 0.000 | 0.419 | 65.801 | |
增强型植被指数EVI | 149.495 | 0.000 | 0.736 | 44.165 | |
绿色归一化植被指数GNDVI | 42.791 | 0.000 | 0.422 | 65.690 | |
绿红植被指数GRVI | 99.978 | 0.000 | 0.648 | 51.230 | |
修正土壤调节植被指数MSAVI | 58.020 | 0.000 | 0.514 | 60.252 | |
归一化差异红外指数NDII | 94.345 | 0.000 | 0.643 | 51.772 | |
归一化植被指数NDVI | 68.197 | 0.000 | 0.551 | 57.870 | |
比值植被指数RVI | 87.103 | 0.000 | 0.609 | 53.961 | |
土壤调节植被指数SAVI | 61.084 | 0.000 | 0.523 | 59.659 | |
全球植被湿度指数GVMI | 94.346 | 0.000 | 0.641 | 51.786 | |
优化土壤调节植被指数OSAVI | 68.197 | 0.000 | 0.552 | 57.875 |
表6 草本植被样地不同指数模型交叉验证
Table 6 Cross validation result of different index models in herbaceous
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 178.964 | 0.000 | 0.773 | 41.083 | |
绿色叶绿素指数CIgreen | 48.036 | 0.000 | 0.461 | 64.608 | |
差值植被指数DVI | 41.271 | 0.000 | 0.419 | 65.801 | |
增强型植被指数EVI | 149.495 | 0.000 | 0.736 | 44.165 | |
绿色归一化植被指数GNDVI | 42.791 | 0.000 | 0.422 | 65.690 | |
绿红植被指数GRVI | 99.978 | 0.000 | 0.648 | 51.230 | |
修正土壤调节植被指数MSAVI | 58.020 | 0.000 | 0.514 | 60.252 | |
归一化差异红外指数NDII | 94.345 | 0.000 | 0.643 | 51.772 | |
归一化植被指数NDVI | 68.197 | 0.000 | 0.551 | 57.870 | |
比值植被指数RVI | 87.103 | 0.000 | 0.609 | 53.961 | |
土壤调节植被指数SAVI | 61.084 | 0.000 | 0.523 | 59.659 | |
全球植被湿度指数GVMI | 94.346 | 0.000 | 0.641 | 51.786 | |
优化土壤调节植被指数OSAVI | 68.197 | 0.000 | 0.552 | 57.875 |
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 14.238 | 0.001 | 0.338 | 69.912 | |
绿色叶绿素指数CIgreen | 3.561 | 0.074 | 0.052 | 86.587 | |
差值植被指数DVI | 2.566 | 0.125 | 0.011 | 87.775 | |
增强型植被指数EVI | 2.321 | 0.143 | 0.009 | 88.182 | |
绿色归一化植被指数GNDVI | 3.722 | 0.068 | 0.054 | 85.422 | |
绿红植被指数GRVI | 1.569 | 0.225 | 0.008 | 89.673 | |
修正土壤调节植被指数MSAVI | 2.818 | 0.109 | 0.019 | 87.235 | |
归一化差异红外指数NDII | 2.655 | 0.119 | 0.016 | 87.195 | |
归一化植被指数NDVI | 2.956 | 0.101 | 0.028 | 86.781 | |
比值植被指数RVI | 2.946 | 0.102 | 0.036 | 87.853 | |
土壤调节植被指数SAVI | 2.985 | 0.099 | 0.028 | 86.735 | |
全球植被湿度指数GVMI | 2.655 | 0.119 | 0.015 | 87.197 | |
优化土壤调节植被指数OSAVI | 2.959 | 0.101 | 0.029 | 86.780 |
表7 灌丛植被样地不同指数模型交叉验证
Table 7 Cross validation result of different index models in shrubs
植被指数 Vegetation index | 拟合模型 Fit model | F | P | 留一交叉验证结果Leave-one-out cross validation result | |
---|---|---|---|---|---|
草地三角形植被指数GTVI | 14.238 | 0.001 | 0.338 | 69.912 | |
绿色叶绿素指数CIgreen | 3.561 | 0.074 | 0.052 | 86.587 | |
差值植被指数DVI | 2.566 | 0.125 | 0.011 | 87.775 | |
增强型植被指数EVI | 2.321 | 0.143 | 0.009 | 88.182 | |
绿色归一化植被指数GNDVI | 3.722 | 0.068 | 0.054 | 85.422 | |
绿红植被指数GRVI | 1.569 | 0.225 | 0.008 | 89.673 | |
修正土壤调节植被指数MSAVI | 2.818 | 0.109 | 0.019 | 87.235 | |
归一化差异红外指数NDII | 2.655 | 0.119 | 0.016 | 87.195 | |
归一化植被指数NDVI | 2.956 | 0.101 | 0.028 | 86.781 | |
比值植被指数RVI | 2.946 | 0.102 | 0.036 | 87.853 | |
土壤调节植被指数SAVI | 2.985 | 0.099 | 0.028 | 86.735 | |
全球植被湿度指数GVMI | 2.655 | 0.119 | 0.015 | 87.197 | |
优化土壤调节植被指数OSAVI | 2.959 | 0.101 | 0.029 | 86.780 |
植被指数 Vegetation index | 中等植被覆盖区 Moderate vegetation coverage area | 低植被覆盖区与高植被覆盖区 Low vegetation coverage area and high vegetation coverage area | ||
---|---|---|---|---|
草地三角形植被指数GTVI | 0.695 | 25.847 | 0.786 | 51.684 |
增强型植被指数EVI | 0.580 | 30.339 | 0.764 | 54.200 |
绿红植被指数GRVI | 0.492 | 33.372 | 0.656 | 58.105 |
全球植被湿度指数GVMI | 0.333 | 38.247 | 0.693 | 61.911 |
表8 中等植被覆盖区GTVI精度提升分析
Table 8 Analysis of GTVI precision improvement in medium vegetation coverage area
植被指数 Vegetation index | 中等植被覆盖区 Moderate vegetation coverage area | 低植被覆盖区与高植被覆盖区 Low vegetation coverage area and high vegetation coverage area | ||
---|---|---|---|---|
草地三角形植被指数GTVI | 0.695 | 25.847 | 0.786 | 51.684 |
增强型植被指数EVI | 0.580 | 30.339 | 0.764 | 54.200 |
绿红植被指数GRVI | 0.492 | 33.372 | 0.656 | 58.105 |
全球植被湿度指数GVMI | 0.333 | 38.247 | 0.693 | 61.911 |
1 | Hu Z M, Fan J W, Zhong H P, et al. Progress on grassland underground biomass researches in China. Chinese Journal of Ecology, 2005(9): 1095-1101. |
胡中民, 樊江文, 钟华平, 等. 中国草地地下生物量研究进展. 生态学杂志, 2005(9): 1095-1101. | |
2 | Wang W, Peng S S, Fang J Y. Biomass distribution of natural grasslands and it response to climate change in North China. Arid Zone Research, 2008, 25(1): 90-97. |
王娓, 彭书时, 方精云. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 2008, 25(1): 90-97. | |
3 | Shao J. Monitoring of shrub encroachment into grassland by utilizing Sentinel-1 and Sentinel-2 jointly-Taking Xilingol grassland as an example. Beijing: University of Chinese Academy of Sciences, 2020. |
邵京. 联合Sentinel-1与Sentinel-2的草地灌丛化监测研究-以锡林郭勒盟草原为例. 北京: 中国科学院大学, 2020. | |
4 | Kawamura K, Akiyama T, Yokota H, et al. Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. International Journal of Remote Sensing, 2005, 26(7): 1423-1436. |
5 | Ren H, Zhou G, Zhang F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sensing of Environment, 2018, 209(2): 439-445. |
6 | Guo C F, Chen W J, Niu M Y, et al. Collaborative estimation of aboveground biomass in grassland based on multiple vegetation index models. Agricultural Research in the Arid Areas, 2022, 40(4): 206-213. |
郭超凡, 陈雯璟, 牛明艳, 等. 基于多植被指数模型的草地地上生物量协同估算. 干旱地区农业研究, 2022, 40(4): 206-213. | |
7 | Zhao Y H, Hou M J, Feng Q S, et al. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
赵翊含, 侯蒙京, 冯琦胜, 等. 基于Landsat 8和随机森林的青海门源天然草地地上生物量遥感估算. 草业学报, 2022, 31(7): 1-14. | |
8 | Guo Q X, Zhang F. Study on estimation of forest biomass based on remote sensing data. Journal of Northeast Forestry University, 2003, 31(2): 13-16. |
国庆喜, 张锋. 基于遥感信息估测森林的生物量. 东北林业大学学报, 2003, 31(2): 13-16. | |
9 | Wu Lan T Y, Bao G, Wu Yun D J, et al. Hyper-spectral remote sensing estimates of aboveground biomass of grassland. Journal of Inner Mongolia Normal University (Natural Science Edition), 2015, 44(5): 660-666. |
乌兰吐雅, 包刚, 乌云德吉, 等. 草地地上生物量高光谱遥感估算研究. 内蒙古师范大学学报(自然科学汉文版), 2015, 44(5): 660-666. | |
10 | Wang G X, Jing C Q, Dong P, et al. Study on biomass estimation and influencing factors of desert grassland in Xinjiang. Acta Agrestia Sinica, 2022, 30(7): 1862-1872. |
王公鑫, 井长青, 董萍, 等. 新疆荒漠草地生物量估算及影响因素研究. 草地学报, 2022, 30(7): 1862-1872. | |
11 | Ding R J. Intelligent recognition of targets in specific areas based on satellite remote sensing images. Guilin: Guangxi Normal University, 2022. |
丁锐进. 基于卫星遥感图像的特定地区目标智能识别. 桂林: 广西师范大学, 2022. | |
12 | Sun B, Li Z Y, Guo Z, et al. Comparison of sparse vegetation information estimation based on GF-1 and Landsat multi-spectral data. Remote Sensing Information, 2015, 30(5): 48-56. |
孙斌, 李增元, 郭中, 等. 高分一号与Landsat TM数据估算稀疏植被信息对比. 遥感信息, 2015, 30(5): 48-56. | |
13 | Yu H, Wu Y F, Jin Y, et al. Retrieving and spatiotemporal variation of aboveground biomass of grassland in arid area based on MODIS SWIR data. Remote Sensing Technology and Application, 2017, 32(3): 524-530. |
于惠, 吴玉锋, 金毅, 等. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究. 遥感技术与应用, 2017, 32(3): 524-530. | |
14 | Zhi R, Chen M M, Yan M, et al. Research on the influence of herdsmen’s family income under the grassland subsidy policy-Take Xilingol League, Inner Mongolia as an example. Acta Agrestia Sinica, 2022, 30(12): 3392-3401. |
智荣, 陈梅梅, 闫敏, 等. 草原补奖政策下牧户家庭收入的影响研究-以内蒙古锡林郭勒盟为例. 草地学报, 2022, 30(12): 3392-3401. | |
15 | Xu Q C. Effects of grassland carbon cycle on drought in Xilingol League. Qufu: Qufu Normal University, 2021. |
徐清宸. 锡林郭勒盟草地碳循环对干旱的响应. 曲阜: 曲阜师范大学, 2021. | |
16 | Rong R, Sun B, Wu Z T, et al. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
戎荣, 孙斌, 武志涛, 等. 灌丛化草原小叶锦鸡儿灌丛地上生物量测量方法研究. 草业学报, 2023, 32(1): 36-47. | |
17 | Jesús D, Jochem V, Luis A, et al. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 2011, 11(7): 7063-7081. |
18 | Xie E H, Wu J E, Yang K. Mass concentration inversion for chlorophyll a in Erhai lake based on Sentinel-2. Chinese Journal of Environmental Engineering, 2022, 16(9): 3058-3069. |
谢恩弘, 吴骏恩, 杨昆. 基于Sentinel-2影像的洱海叶绿素a质量浓度反演. 环境工程学报, 2022,16(9): 3058-3069. | |
19 | Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172. |
20 | Jiang Z Y, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 2008, 112(10): 3833-3845. |
21 | Huang J X, Wu J, Li C B, et al. Remote sensing retrieval of grassland above-ground biomass in Tianzhu County based on Sentinel-2 and Landsat 8 data. Acta Agrestia Sinica, 2021, 29(9): 2023-2030. |
黄家兴, 吴静, 李纯斌, 等. 基于Sentinel-2和Landsat 8数据的天祝县草地地上生物量遥感反演. 草地学报, 2021, 29(9): 2023-2030. | |
22 | Wu C, Niu Z, Gao S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland. Ecological Indicators, 2011, 14(1): 66-73. |
23 | Hardisky M A, Daiber F C, Roman C T, et al. Remote sensing of biomass and annual net aerial primary productivity of a salt marsh. Remote Sensing of Environment, 1984, 16(2): 91-106. |
24 | Steven M D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment, 1998, 63(1): 49-60. |
25 | Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25(3): 295-309. |
26 | Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2): 119-126. |
27 | Ren Z P, Gao R, Wang D Q. Identification and classification of rice lodging based on Sentinel-2 multispectral image. Water Saving Irrigation, 2022(7): 44-50. |
任志鹏, 高睿, 王大庆. 基于哨兵2号多光谱影像的水稻倒伏识别与分类. 节水灌溉, 2022(7): 44-50. | |
28 | Ceccato P, Flasse S, Grégoire J M. Designing a spectral index to estimate vegetation water content from remote sensing data. Remote Sensing of Environment, 2022, 82(2): 198-207. |
29 | Geisser S A. A predictive approach to the random effect model. Biometrika, 1974, 61(1): 101-107. |
30 | Wen B M, Zhao L W, Huang L. Proof of the asymptotic equivalence between AIC criterion and LOOCV. Statistics & Decision, 2022, 38(6): 40-43. |
文冰梅, 赵联文, 黄磊. AIC准则与留一法交叉验证渐近等价的证明. 统计与决策, 2022, 38(6): 40-43. | |
31 | Gao Z H, Li Z Y, Wei H D, et al. Study on the suitability of vegetation indices(Ⅵ) in arid area. Journal of Desert Research, 2006, 26(2): 243-248. |
高志海, 李增元, 魏怀东, 等. 干旱地区植被指数(Ⅵ)的适宜性研究. 中国沙漠, 2006, 26(2): 243-248. | |
32 | Zhang X X. A comparative study on different vegetation indices in capabilities for eliminating soil background noise and detecting vegetation coverage. Highlights of Sciencepaper Online, 2016, 9(2): 126-132. |
张秀霞. 不同植被指数抵抗土壤背景噪声及探测植被覆盖能力的对比分析. 中国科技论文在线精品论文, 2016, 9(2): 126-132. | |
33 | Dong L X, Wu B F, Tang S H. Estimation of forest aboveground biomass by integrating GLAS and ETM data. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4): 703-710. |
董立新, 吴炳方, 唐世浩. 激光雷达GLAS与ETM联合反演森林地上生物量研究. 北京大学学报(自然科学版), 2011,47(4): 703-710. | |
34 | Ma C, Shi Y, Li M H, et al. Research of grassland biomass model based on NDVI in loess hilly and gully region-A case of Pengyang County, Ningxia. Ningxia Engineering Technology, 2017, 16(1): 19-23. |
马超, 石云, 李梦华, 等. 基于NDVI的黄土丘陵沟壑区草地生物量模型研究-以宁夏彭阳县为例. 宁夏工程技术, 2017, 16(1): 19-23. |
[1] | 张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021, 30(11): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||