草业学报 ›› 2023, Vol. 32 ›› Issue (10): 15-27.DOI: 10.11686/cyxb2022469
收稿日期:
2022-11-29
修回日期:
2023-02-27
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
蒲玉琳
作者简介:
E-mail: pyulin@sicau.edu.cn基金资助:
Hong-yu QIAN(), Yu-lin PU(), Shan-xin LANG, Yi-ran LI, Nan-ding ZHOU
Received:
2022-11-29
Revised:
2023-02-27
Online:
2023-10-20
Published:
2023-07-26
Contact:
Yu-lin PU
摘要:
明晰退化草地土壤有机磷在不同温度下的矿化特征,可为退化草地生态恢复中的土壤磷养分科学调控提供基础数据与理论依据。采用恒温控湿好气培养法研究若尔盖高原未退化草甸(ND)、轻度退化(LD)、中度退化(MD)、重度退化(HD)草甸土壤有机磷矿化特征及温度效应。结果表明,4类草甸土壤5~15 ℃培养下,有机磷矿化速率在前期(0~30 d)无明显变化,中期(30~60 d)快速增加,后期(60~120 d)逐渐趋于稳定。低温(5~10 ℃)时,草甸退化对土壤有机磷矿化无显著影响,但在高温(≥15 ℃)时,草甸自中度退化开始显著降低了土壤有机磷矿化作用。与ND相比,15 ℃时MD和HD土壤有机磷净矿化速率分别显著降低52.8%、56.8%,表征土壤有机磷矿化快慢常数的B0 值分别显著降低29.5%、40.4%。土壤有机磷矿化的温度敏感性随草甸退化程度加剧而逐渐降低,ND土壤有机磷矿化的温度敏感系数y″值分别比MD、HD显著升高221.1%、306.7%。由此可见,高寒草甸退化减小了土壤有机磷的矿化作用和温度敏感性,进而降低了土壤磷素有效性,还可能因全球继续变暖而诱发退化草地生态系统的磷限制问题。
钱虹宇, 蒲玉琳, 郎山鑫, 李怡燃, 周南丁. 土壤有机磷矿化特征对高寒草甸退化及温度的响应[J]. 草业学报, 2023, 32(10): 15-27.
Hong-yu QIAN, Yu-lin PU, Shan-xin LANG, Yi-ran LI, Nan-ding ZHOU. Response of soil organic phosphorus mineralization to alpine meadow degradation and temperature[J]. Acta Prataculturae Sinica, 2023, 32(10): 15-27.
类型 Types | 植被盖度 Coverage (%) | 毒杂草比例 Weed (%) | 植物群落 Community | 优势植物 Dominant plants | 鼠洞Mouse hole (No.·100 m-2) |
---|---|---|---|---|---|
ND | >90 | 0~10 | 湿生为主 Hygrophytes | 西藏嵩草 Kobresia tibetica,华扁穗草 Blysmus sinocompressus, 泽地早熟禾 Poa palustris | 0 |
LD | 80~90 | 10~30 | 湿生和中生 Hygrophytes and mesophytes | 西藏嵩草 K. tibetica, 紫穗鹅观草 Roegneria purpurascens, 华扁穗草 B. sinocompressus | 5~20 |
MD | 60~80 | 30~50 | 中生为主 Mesophytes | 矮生二裂委陵菜 Potentilla bifurca var. humilior,黄帚橐吾 Ligularia sibirica,火绒草 Leontopodium leontopodioides | 20~50 |
HD | <60 | >50 | 旱生为主 Xerophytes | 蕨麻 Potentilla anserina,瑞香狼毒 Stellera chamaejasme, 车前草Plantago asiatica | >50 |
表1 不同退化程度草甸的主要生境特征
Table 1 Main habitat characteristics of meadows with different degradation degrees
类型 Types | 植被盖度 Coverage (%) | 毒杂草比例 Weed (%) | 植物群落 Community | 优势植物 Dominant plants | 鼠洞Mouse hole (No.·100 m-2) |
---|---|---|---|---|---|
ND | >90 | 0~10 | 湿生为主 Hygrophytes | 西藏嵩草 Kobresia tibetica,华扁穗草 Blysmus sinocompressus, 泽地早熟禾 Poa palustris | 0 |
LD | 80~90 | 10~30 | 湿生和中生 Hygrophytes and mesophytes | 西藏嵩草 K. tibetica, 紫穗鹅观草 Roegneria purpurascens, 华扁穗草 B. sinocompressus | 5~20 |
MD | 60~80 | 30~50 | 中生为主 Mesophytes | 矮生二裂委陵菜 Potentilla bifurca var. humilior,黄帚橐吾 Ligularia sibirica,火绒草 Leontopodium leontopodioides | 20~50 |
HD | <60 | >50 | 旱生为主 Xerophytes | 蕨麻 Potentilla anserina,瑞香狼毒 Stellera chamaejasme, 车前草Plantago asiatica | >50 |
指标 Indices | ND | LD | MD | HD |
---|---|---|---|---|
植被盖度Vegetation coverage (VC, %) | 95.67±2.35a | 84.00±1.35b | 75.67±2.92b | 55.00±2.33c |
地上生物量Aboveground biomass (AB, g·m-2) | 645.08±57.03a | 499.55±89.15b | 218.61±37.68b | 138.49±31.66c |
地下生物量Underground biomass (UB, g·m-2) | 2143.28±29.22a | 1170.30±464.67b | 1016.32±364.31b | 104.10±32.33c |
容重Bulk density (BD, g·cm-3) | 0.43±0.10b | 0.85±0.04a | 0.95±0.18a | 1.04±0.12a |
pH | 7.44±0.01a | 7.44±0.22a | 7.57±0.11a | 7.63±0.26a |
有机质Organic matter (OM, g·kg-1) | 344.52±30.17a | 235.81±32.51b | 216.65±40.90bc | 157.78±15.29c |
全氮Total nitrogen (TN, g·kg-1) | 14.00±2.24a | 6.12±0.64b | 5.30±0.05b | 5.74±1.06b |
全磷Total phosphorus (TP, g·kg-1) | 1.13±0.16a | 0.83±0.04b | 0.82±0.06b | 0.83±0.06b |
全钾Total potassium (TK, g·kg-1) | 14.84±0.98b | 17.52±1.12ab | 18.11±0.72a | 18.06±1.78a |
碱解氮Alkaline nitrogen (AN, mg·kg-1) | 952.02±208.09a | 435.56±42.24b | 396.27±35.97b | 357.98±47.58b |
有效磷Available phosphorus (AP, mg·kg-1) | 33.81±6.32a | 17.89±7.32b | 13.29±5.39b | 12.21±2.94b |
有效钾Available potassium (AK, mg·kg-1) | 125.75±22.06b | 228.36±197.44ab | 288.20±78.84a | 249.37±133.07ab |
表2 不同退化程度高寒草甸的主要植被特征和土壤理化性质
Table 2 Main vegetation characteristics and soil physical and chemical properties of alpine meadows with differently degradation degrees
指标 Indices | ND | LD | MD | HD |
---|---|---|---|---|
植被盖度Vegetation coverage (VC, %) | 95.67±2.35a | 84.00±1.35b | 75.67±2.92b | 55.00±2.33c |
地上生物量Aboveground biomass (AB, g·m-2) | 645.08±57.03a | 499.55±89.15b | 218.61±37.68b | 138.49±31.66c |
地下生物量Underground biomass (UB, g·m-2) | 2143.28±29.22a | 1170.30±464.67b | 1016.32±364.31b | 104.10±32.33c |
容重Bulk density (BD, g·cm-3) | 0.43±0.10b | 0.85±0.04a | 0.95±0.18a | 1.04±0.12a |
pH | 7.44±0.01a | 7.44±0.22a | 7.57±0.11a | 7.63±0.26a |
有机质Organic matter (OM, g·kg-1) | 344.52±30.17a | 235.81±32.51b | 216.65±40.90bc | 157.78±15.29c |
全氮Total nitrogen (TN, g·kg-1) | 14.00±2.24a | 6.12±0.64b | 5.30±0.05b | 5.74±1.06b |
全磷Total phosphorus (TP, g·kg-1) | 1.13±0.16a | 0.83±0.04b | 0.82±0.06b | 0.83±0.06b |
全钾Total potassium (TK, g·kg-1) | 14.84±0.98b | 17.52±1.12ab | 18.11±0.72a | 18.06±1.78a |
碱解氮Alkaline nitrogen (AN, mg·kg-1) | 952.02±208.09a | 435.56±42.24b | 396.27±35.97b | 357.98±47.58b |
有效磷Available phosphorus (AP, mg·kg-1) | 33.81±6.32a | 17.89±7.32b | 13.29±5.39b | 12.21±2.94b |
有效钾Available potassium (AK, mg·kg-1) | 125.75±22.06b | 228.36±197.44ab | 288.20±78.84a | 249.37±133.07ab |
图2 土壤有机磷累积矿化量动态ND, 未退化草甸; LD, 轻度退化草甸; MD, 中度退化草甸; HD, 重度退化草甸。下同。*代表不同温度间差异显著(P<0.05),小写字母代表不同退化程度间差异显著(P<0.05)。ND, Non-degraded meadow; LD, Lightly degraded meadow; MD, Moderately degraded meadow; HD, Heavily degraded meadow. The same below. * represent significant difference among different temperatures (P<0.05). Lowercase letters represent significant differences among different degradation degrees (P<0.05).
Fig. 2 Dynamic of cumulative mineralization of soil organic phosphorus
培养时间 Time (d) | ND | LD | MD | HD | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
0~1 | 4.998 | <0.05* | 1.197 | 0.365 | 0.710 | 0.529 | 20.945 | <0.05* |
1~3 | 5.084 | <0.05* | 0.036 | 0.965 | 0.273 | 0.770 | 35.139 | <0.001** |
3~7 | 24.846 | <0.05* | 34.178 | <0.05* | 7.214 | <0.05* | 22.583 | <0.05* |
7~14 | 11.976 | <0.05* | 23.350 | <0.05* | 3.708 | 0.089 | 3.602 | 0.094 |
14~30 | 0.375 | 0.703 | 7.008 | <0.05* | 2.218 | 0.190 | 24.322 | <0.05* |
30~60 | 1.537 | 0.289 | 3.612 | 0.093 | 2.774 | 0.140 | 11.414 | <0.05* |
60~90 | 6.942 | <0.05* | 8.421 | <0.05* | 0.787 | 0.497 | 2.462 | 0.166 |
90~120 | 6.455 | <0.05* | 1.903 | 0.229 | 0.995 | 0.424 | 1.065 | 0.402 |
0~120 | 20.696 | <0.05* | 406.369 | <0.001** | 10.881 | <0.05* | 35.229 | <0.001** |
表3 同一类型草甸土壤有机磷净矿化速率在温度间的方差分析结果
Table 3 Results of variance analysis of net mineralization rate of organic phosphorus in the same meadow soil among temperatures
培养时间 Time (d) | ND | LD | MD | HD | ||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | |
0~1 | 4.998 | <0.05* | 1.197 | 0.365 | 0.710 | 0.529 | 20.945 | <0.05* |
1~3 | 5.084 | <0.05* | 0.036 | 0.965 | 0.273 | 0.770 | 35.139 | <0.001** |
3~7 | 24.846 | <0.05* | 34.178 | <0.05* | 7.214 | <0.05* | 22.583 | <0.05* |
7~14 | 11.976 | <0.05* | 23.350 | <0.05* | 3.708 | 0.089 | 3.602 | 0.094 |
14~30 | 0.375 | 0.703 | 7.008 | <0.05* | 2.218 | 0.190 | 24.322 | <0.05* |
30~60 | 1.537 | 0.289 | 3.612 | 0.093 | 2.774 | 0.140 | 11.414 | <0.05* |
60~90 | 6.942 | <0.05* | 8.421 | <0.05* | 0.787 | 0.497 | 2.462 | 0.166 |
90~120 | 6.455 | <0.05* | 1.903 | 0.229 | 0.995 | 0.424 | 1.065 | 0.402 |
0~120 | 20.696 | <0.05* | 406.369 | <0.001** | 10.881 | <0.05* | 35.229 | <0.001** |
培养时间 Time (d) | 5 ℃ | 10 ℃ | 15 ℃ | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
0~1 | 1.017 | 0.435 | 8.908 | 0.106 | 1.192 | 0.372 |
1~3 | 0.892 | 0.486 | 0.990 | 0.445 | 0.163 | 0.919 |
3~7 | 2.519 | 0.132 | 1.115 | 0.399 | 0.554 | 0.660 |
7~14 | 1.569 | 0.271 | 0.732 | 0.561 | 0.863 | 0.499 |
14~30 | 2.823 | 0.107 | 0.690 | 0.583 | 0.077 | 0.971 |
30~60 | 2.015 | 0.191 | 2.950 | 0.098 | 0.464 | 0.715 |
60~90 | 0.332 | 0.803 | 1.834 | 0.219 | 0.627 | 0.618 |
90~120 | 0.707 | 0.574 | 1.574 | 0.270 | 5.853 | <0.05* |
0~120 | 0.045 | 0.987 | 0.195 | 0.897 | 36.713 | <0.001** |
表4 同一温度下不同类型草甸土壤有机磷净矿化速率的方差分析结果
Table 4 Results of variance analysis of net mineralization rate of organic phosphorus in different meadow soils at the same temperature
培养时间 Time (d) | 5 ℃ | 10 ℃ | 15 ℃ | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
0~1 | 1.017 | 0.435 | 8.908 | 0.106 | 1.192 | 0.372 |
1~3 | 0.892 | 0.486 | 0.990 | 0.445 | 0.163 | 0.919 |
3~7 | 2.519 | 0.132 | 1.115 | 0.399 | 0.554 | 0.660 |
7~14 | 1.569 | 0.271 | 0.732 | 0.561 | 0.863 | 0.499 |
14~30 | 2.823 | 0.107 | 0.690 | 0.583 | 0.077 | 0.971 |
30~60 | 2.015 | 0.191 | 2.950 | 0.098 | 0.464 | 0.715 |
60~90 | 0.332 | 0.803 | 1.834 | 0.219 | 0.627 | 0.618 |
90~120 | 0.707 | 0.574 | 1.574 | 0.270 | 5.853 | <0.05* |
0~120 | 0.045 | 0.987 | 0.195 | 0.897 | 36.713 | <0.001** |
温度 Temperature (℃) | 类型 Types | 第一阶段:0~7 d First stage: 0-7 d | 第二阶段:7~120 d Second stage: 7-120 d | ||||
---|---|---|---|---|---|---|---|
A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | ||
5 | ND | 0.04A | -27.18A | <0.05* | -84.74Ac | 5.45Ab | <0.001** |
LD | 1.06A | -23.98A | <0.05* | -78.81Ac | 5.18Aab | <0.001** | |
MD | 5.20A | -24.54A | <0.05* | -70.54Ac | 4.51Aa | <0.05* | |
HD | 4.62A | -31.21A | <0.05* | -76.03Ac | 4.21Aa | <0.05* | |
10 | ND | -5.85A | -16.27A | <0.05* | -56.70Ab | 6.38Aa | <0.001** |
LD | -5.77A | -10.51A | <0.05* | -50.00Ab | 5.43Aa | <0.05* | |
MD | -0.95A | -11.49A | <0.05* | -50.11Ab | 4.21ABab | <0.05* | |
HD | 0.97A | -16.45A | <0.05* | -52.79Ab | 4.43ABa | <0.001** | |
温度 Temperature (℃) | 类型 Types | 0~120 d | |||||
A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | |||||
15 | ND | -20.14Ba | 7.35Aa | <0.001** | |||
LD | -18.53Aa | 6.28Aab | <0.001** | ||||
MD | -19.52ABa | 5.18Bb | <0.05* | ||||
HD | -17.10Aa | 4.38Bb | <0.05* |
表5 土壤有机磷矿化动力学方程的模拟参数
Table 5 Simulation parameter of dynamic equation (CPM=A0+ B0t1/2) of soil organic phosphorus mineralization
温度 Temperature (℃) | 类型 Types | 第一阶段:0~7 d First stage: 0-7 d | 第二阶段:7~120 d Second stage: 7-120 d | ||||
---|---|---|---|---|---|---|---|
A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | ||
5 | ND | 0.04A | -27.18A | <0.05* | -84.74Ac | 5.45Ab | <0.001** |
LD | 1.06A | -23.98A | <0.05* | -78.81Ac | 5.18Aab | <0.001** | |
MD | 5.20A | -24.54A | <0.05* | -70.54Ac | 4.51Aa | <0.05* | |
HD | 4.62A | -31.21A | <0.05* | -76.03Ac | 4.21Aa | <0.05* | |
10 | ND | -5.85A | -16.27A | <0.05* | -56.70Ab | 6.38Aa | <0.001** |
LD | -5.77A | -10.51A | <0.05* | -50.00Ab | 5.43Aa | <0.05* | |
MD | -0.95A | -11.49A | <0.05* | -50.11Ab | 4.21ABab | <0.05* | |
HD | 0.97A | -16.45A | <0.05* | -52.79Ab | 4.43ABa | <0.001** | |
温度 Temperature (℃) | 类型 Types | 0~120 d | |||||
A0 (mg·kg-1) | B0 (mg·kg-1·day-1/2) | P | |||||
15 | ND | -20.14Ba | 7.35Aa | <0.001** | |||
LD | -18.53Aa | 6.28Aab | <0.001** | ||||
MD | -19.52ABa | 5.18Bb | <0.05* | ||||
HD | -17.10Aa | 4.38Bb | <0.05* |
类型Types | 拟合方程Equation | R2 | P | y″ | C |
---|---|---|---|---|---|
ND | R=0.0061T2-0.0382T-0.1486 | 0.8713 | 0.002 | 0.0122a | -0.1486a |
LD | R=0.0046T2-0.0140T-0.2360 | 0.9929 | <0.001 | 0.0092ab | -0.2360ab |
MD | R=0.0019T2+0.0185T-0.3545 | 0.7812 | 0.010 | 0.0038b | -0.3545b |
HD | R=0.0015T2+0.0254T-0.3859 | 0.9174 | 0.001 | 0.0030b | -0.3859b |
表6 土壤有机磷矿化速率与温度的关系
Table 6 Regression relationship between soil organic phosphorus mineralization rate and temperature
类型Types | 拟合方程Equation | R2 | P | y″ | C |
---|---|---|---|---|---|
ND | R=0.0061T2-0.0382T-0.1486 | 0.8713 | 0.002 | 0.0122a | -0.1486a |
LD | R=0.0046T2-0.0140T-0.2360 | 0.9929 | <0.001 | 0.0092ab | -0.2360ab |
MD | R=0.0019T2+0.0185T-0.3545 | 0.7812 | 0.010 | 0.0038b | -0.3545b |
HD | R=0.0015T2+0.0254T-0.3859 | 0.9174 | 0.001 | 0.0030b | -0.3859b |
图4 土壤CPM和B0值与土壤和植被因子的相关性VC,植被盖度;AB,地上生物量;UB,地下生物量;BD,容重;OM,有机质;TN,全氮;TP,全磷;TK,全钾;AN,碱解氮;AP,有效磷;AK,有效钾。VC, Vegetation coverage; AB, Aboveground biomass; UB, Underground biomass; BD, Bulk density; OM, Organic matter; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Alkaline nitrogen; AP, Available phosphorus; AK, Available potassium.
Fig. 4 Correlation of soil CPM and B0 value with soil and vegetation factors
1 | Zhu X Y, Zhao X R, Lin Q M, et al. Distribution characteristics of soil organic phosphorus fractions in the Inner Mongolia Steppe. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2394-2405. |
2 | Mclaren T I, Smernik R J, Mclaughlin M J, et al. Complex forms of soil organic phosphorus-a major component of soil phosphorus. Environmental Science & Technology, 2015, 49(22): 13238-13245. |
3 | Tian J, Wei K, Condron L M, et al. Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils. Biology and Fertility of Soils, 2016, 52: 675-683. |
4 | Zhao Q, Zeng D H. Phosphorus fractions and phosphomonoesterase activities in sandy soils under a temperate savanna and a neighboring Mongolian pine plantation. Journal of Forestry Research, 2006, 17: 25-30. |
5 | Wang T, Yang Y H, Ma W H. Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945-952. |
汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 2008, 44(6): 945-952. | |
6 | Rita J C D O, Gama-Rodrigues A C, Gama-Rodrigues E F, et al. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro. Revista Brasileira de Ciência do Solo, 2013, 37(5): 1207-1215. |
7 | Chen C, Condron L M, Xu Z. Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: A review. Forest Ecology and Management, 2008, 255(314): 396-409. |
8 | López-Gutiérrez J C, Toro M, López-Hernández D. Seasonality of organic phosphorus mineralization in the rhizosphere of the native savanna grass, Trachypogon plumosus. Soil Biology and Biochemistry, 2004, 36(10): 1675-1684. |
9 | Sundqvist M K, Wardle D A, Vincent A, et al. Contrasting nitrogen and phosphorus dynamics across an elevational gradient for subarctic tundra heath and meadow vegetation. Plant and Soil, 2014, 383(112): 387-399. |
10 | Rui Y, Wang Y, Chen C, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 2012, 357(1): 73-87. |
11 | Nie Z G, Wu J Q, Ma W W, et al. Stoichiometric characteristics and dynamics of plant carbon, nitrogen and phosphorus in differently degraded Gannan Hai Wetland. Acta Agrestia Sinica, 2018, 26(2): 386-392. |
聂志刚, 吴江琪, 马维伟, 等. 甘南尕海湿地不同退化程度植物碳、氮、磷的化学计量特征及动态变化. 草地学报, 2018, 26(2): 386-392. | |
12 | Wang W L, Dong Z B, Yan C Z. Trend analysis on land degradation in Zoige Plateau based on landscape structure methods. Journal of Arid Land Resources and Environment, 2014, 28(10): 117-122. |
王文丽, 董治宝, 颜长珍. 基于景观结构方法的若尔盖高原土地退化趋势研究. 干旱区资源与环境, 2014, 28(10): 117-122. | |
13 | Xu Y D, Dong S K, Shen H, et al. Degradation significantly decreased the ecosystem multifunctionality of three alpine grasslands: evidences from a large-scale survey on the Qinghai-Tibetan Plateau. Journal of Mountain Science, 2021, 18(2): 357-366. |
14 | Hong J T, Wu J B, Wang X D. Effects of grazing and fencing on Stipa purpurea community biomass allocation and carbon, nitrogen and phosphorus pools on the northern Tibet Plateau alpine. Pratacultural Science, 2015, 32(11): 1878-1886. |
洪江涛, 吴建波, 王小丹. 放牧和围封对藏北高寒草原紫花针茅群落生物量分配及碳、氮、磷储量的影响. 草业科学, 2015, 32(11): 1878-1886. | |
15 | Luo L, Ye H Y, Zhang D H, et al. The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 2021, 278: 130501. |
16 | Li F Y, Yuan C Y, Yuan Z Q, et al. Bioavailable phosphorus distribution in alpine meadow soil is affected by topography in the Tianshan Mountains. Journal of Mountain Science, 2020, 17(2): 410-425. |
17 | Bing H J, Wu Y H, Zhou J, et al. Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau. Journal of Soils and Sediments, 2016, 16: 405-416. |
18 | Gao J, Li X L, Cheng A, et al. Degradation of wetlands on the Qinghai-Tibet Plateau: A comparsion of the effectiveness of three indicators. Journal of Mountain Science, 2013, 10(4): 658-667. |
19 | Zeng F Y, Chen S, Han Z L, et al.Study on remote sensing monitoring of desert grassland desertification in Manasi River basin. The Administration and Technique of Environmental Monitoring, 2020, 32(2): 12-16. |
曾飞越, 陈实, 韩忠玲, 等. 玛纳斯河流域荒漠草地沙化遥感监测研究. 环境监测管理与技术, 2020, 32(2): 12-16. | |
20 | Mu J P, Fu R H, Tan L. Effects of soil physical and chemical properties on above-ground biomass of functional groups at different degradation successional stages of alpine meadows. Journal of Grassland and Forage Science, 2018(2): 41-47. |
慕军鹏, 付荣华, 谭露. 不同退化演替阶段高寒草甸土壤理化性质对功能群植物地上生物量的影响. 草业与畜牧, 2018(2): 41-47. | |
21 | Liu W, Zhou H K, Zhou L. Biomass distribution pattern of degraded grassland in alpine meadow. Grassland of China, 2005, 27(2): 9-15. |
刘伟, 周华坤, 周立. 不同程度退化草地生物量的分布模式. 中国草地, 2005, 27(2): 9-15. | |
22 | Lu R K. Soil agrochemical analysis methods. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
23 | Jalali M, Mahdavi S, Ranjbar F. Nitrogen, phosphorus and sulfur mineralization as affected by soil depth in rangeland ecosystems. Environmental Earth Sciences, 2014, 72(6): 1775-1788. |
24 | Nakayama Y H, Wade J, Margenot A J. Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation? Geoderma, 2021, 401: 115279. |
25 | Ge X M, Chen X D, Tang L Z, et al. Preliminary study on the effects of litter addition on nitrogen and phosphorus mineralization of soil in poplar plantations. Journal of Soil and Water Conservation, 2013, 27(3): 189-193. |
葛晓敏, 陈晓东, 唐罗忠, 等. 添加凋落物对杨树人工林土壤氮、磷矿化的影响初探. 水土保持学报, 2013, 27(3): 189-193. | |
26 | Shi W J. Effects of vegetation on soil phosphorus fractions and mineralization in Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2015. |
石文静. 青藏高原植被类型对土壤磷组分及矿化的影响. 兰州: 兰州大学, 2015. | |
27 | Gao Z Q, Bai J H, Wen X J, et al. Processes and influencing factors of organic phosphorus mineralization in various wetland soils in the Pearl River Estuary, China. Journal of Beijing Normal University (Natural Science), 2018, 54(1): 131-136. |
高照琴, 白军红, 温晓君, 等. 珠江河口不同类型湿地土壤有机磷矿化过程及其影响因素研究. 北京师范大学学报(自然科学版), 2018, 54(1): 131-136. | |
28 | Sun J, Zhang X P, Li S L, et al. Screening of phosphorus solubilizing microorganisms under high cold and cool environment. Soil and Fertilizer Sciences in China: 1-9. [2022-09-18]. http://kns.cnki.net/kcms/detail/11.5498.S.20220505.1538.007.html. |
孙健, 张鑫鹏, 李松龄, 等. 高寒冷凉环境中解磷微生物的效果初探. 中国土壤与肥料: 1-9. [2022-09-18]. http://kns.cnki.net/kcms/detail/11.5498.S.20220505.1538.007.html. | |
29 | Liu D, Deng Q, Shi X R, et al. Responses of phosphatase activity in rhizosphere and non-rhizosphere soils to simulated precipitation changes in Planted Robinia pseudoacacia forest on the Loess Plateau. Research of Soil and Water Conservation, 2020, 27(1): 95-103. |
刘迪, 邓强, 时新荣, 等. 黄土高原刺槐人工林根际和非根际土壤磷酸酶活性对模拟降水变化的响应. 水土保持研究, 2020, 27(1): 95-103. | |
30 | Li W B, Huang G Z, Zhang H X. Enclosure increases nutrient resorption from senescing leaves in a subalpine pasture. Plant and Soil, 2020, 457: 1-10. |
31 | Yao Y J, Liang T, Ma Y, et al. Response of soil microbial community diversity to degradation degree of alpine meadow. Acta Agrestia Sinica, 2020, 28(6): 1489-1497. |
姚玉娇, 梁婷, 马源, 等. 土壤微生物群落多样性对高寒草甸退化程度的响应. 草地学报, 2020, 28(6): 1489-1497. | |
32 | Wang Y Q, Yin Y L, Li S X. Physicochemical properties and enzymatic activities of alpine meadow at different degradation degrees. Ecology and Environmental Sciences, 2019, 28(6): 1108-1116. |
王玉琴, 尹亚丽, 李世雄. 不同退化程度高寒草甸土壤理化性质及酶活性分析. 生态环境学报, 2019, 28(6): 1108-1116. | |
33 | Turner B L, Mahieu N, Condron L M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America Journal, 2003, 67(2): 147-160. |
34 | Chapin F S, Shaver G R, Giblin A E, et al. Responses of Arctic tundra to experimental and observed changes in climate. Ecology, 1995, 76(3): 694-711. |
35 | Li N, Shan B Q, Zhang H, et al. Organic phosphorus mineralization in the sediments under the impact of pH and temperature. Environmental Science, 2011, 32(4): 1008-1014. |
李楠, 单保庆, 张洪, 等. 沉积物中有机磷在pH和温度影响下的矿化机制. 环境科学, 2011, 32(4): 1008-1014. | |
36 | Pant H K, Warman P R. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biology and Fertility of Soils, 2000, 30(4): 306-311. |
37 | Menge D N L, Field C B. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology, 2007, 13(12): 2582-2591. |
38 | Li J W. The effect and mechanism of warming on soil phosphorus components of Cunninghamia lanceolata forest in different forest ages. Fuzhou: Fujian Normal University, 2020. |
李靖雯. 增温对不同林龄杉木林土壤磷组分的影响及其机制. 福州: 福建师范大学, 2020. | |
39 | Jiang Y, Bu F, Zhang C, et al. Research advances on soil organic phosphorus mineralization. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(3): 160-166. |
姜一, 步凡, 张超, 等. 土壤有机磷矿化研究进展. 南京林业大学学报(自然科学版), 2014, 38(3): 160-166. | |
40 | Yin Y L, Wang Y Q, Li S X, et al. Study on seasonal various of characteristics of soil microbial community at degraded alpine meadows in the Three-River-Source area. Ecology and Environmental Sciences, 2018, 27(10): 1791-1800. |
尹亚丽, 王玉琴, 李世雄, 等. 三江源退化高寒草甸土壤微生物群落季节特征研究. 生态环境学报, 2018, 27(10): 1791-1800. | |
41 | Gao Y J, Li Y J, Jiang Z Y, et al. The phosphorus content and alkaline phosphatase activity of different alpine meadow. Grassland and Turf, 2022, 42(5): 81-87. |
高亚君, 李亚娟, 姜智英, 等. 不同退化程度高寒草甸土壤磷素含量与碱性磷酸酶活性研究. 草原与草坪, 2022, 42(5): 81-87. | |
42 | Shaw A N, Cleveland C C. The effects of temperature on soil phosphorus availability and phosphatase enzyme activities: A cross-ecosystem study from the tropics to the Arctic. Biogeochemistry, 2020, 151(2): 113-125. |
[1] | 熊莉,徐振锋,吴福忠,杨万勤,殷睿,李志萍,倪祥银,熊海涛. 踩踏对亚热带沟叶结缕草草坪冬季休眠期土壤呼吸的影响[J]. 草业学报, 2014, 23(2): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||