草业学报 ›› 2023, Vol. 32 ›› Issue (10): 104-114.DOI: 10.11686/cyxb2022444
• 研究论文 • 上一篇
收稿日期:
2022-11-10
修回日期:
2023-01-04
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
石兆勇
作者简介:
E-mail: shizy1116@126.com基金资助:
Wen-jing WEI(), Zhao-yong SHI(), Meng-ge ZHANG, Shuang YANG, Wen-ya YANG
Received:
2022-11-10
Revised:
2023-01-04
Online:
2023-10-20
Published:
2023-07-26
Contact:
Zhao-yong SHI
摘要:
为了探究菌根状态和施肥对草地植物叶片性状的影响,对横跨4大洲的27个全球分布的草地站点进行施肥处理,包括对照及氮(N)、磷(P)、钾(K)的全因子组合,在添加养分3~4年后测定每个地块优势物种的叶片N、P、K含量和比叶面积(specific leaf area,SLA),并根据已发表文献确定了植物的菌根状态。在此基础上,结合优势物种的构成,将草地植物分为禾本科植物和非禾本科植物,进一步分析两种植物类群对不同菌根状态和施肥处理的响应。结果表明:菌根状态是影响草地植物叶片性状的重要因素,尤其对于禾本科植物而言,非确定菌根(non-obligately mycorrhizal,NOM)植物的叶片养分含量显著高于确定形成菌根(obligately mycorrhizal,OM)的植物;对于非禾本科和草地植物而言,OM植物和NOM植物的叶片性状同样表现出差异性,但总体并不显著。施肥对草地植物叶片性状的影响主要表现为显著提高其叶片N、P、K含量,对SLA的影响较小。路径分析结果进一步表明,叶片养分含量与施肥呈显著正相关,SLA与施肥无显著相关关系。此外,草地OM和NOM植物的叶片性状均受到气候因素和处理年限的显著影响。综上,菌根状态显著影响禾本科植物的叶片性状,施肥显著提高草地植物叶片养分含量,气候因素和处理年限对草地植物叶片性状的影响同样值得引起注意。
韦文敬, 石兆勇, 张梦歌, 杨爽, 杨文雅. 基于数据库的菌根与施肥对草地植物叶片性状影响的分析[J]. 草业学报, 2023, 32(10): 104-114.
Wen-jing WEI, Zhao-yong SHI, Meng-ge ZHANG, Shuang YANG, Wen-ya YANG. Response to fertilization of leaf functional traits of grassland plants with different mycorrhizal status[J]. Acta Prataculturae Sinica, 2023, 32(10): 104-114.
图1 菌根状态和施肥对草地植物叶片性状的影响OM: OM植物OM plants; NOM: NOM植物NOM plants。*代表不同菌根状态间差异显著(P<0.05)。当指标Ln值的95%置信区间内不包含0时,该指标对施肥的响应显著。下同。* represents a significant difference between different mycorrhizal statuses (P<0.05). When the 95% confidence interval of the index Ln value does not include 0,the index responds significantly to fertilization. The same below.
Fig.1 Effects of mycorrhizal status and fertilization on leaf traits of grassland plants
图2 菌根状态和施肥对禾本科植物叶片性状的影响**代表不同菌根状态间差异极显著(P<0.01)。下同。** represents an extremely significant difference between different mycorrhizal statuses(P<0.01). The same below.
Fig.2 Effects of mycorrhizal status and fertilization on leaf traits of gramineous plants
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 88.10 | <0.001 | 53.63 | <0.001 | 13.39 | <0.001 |
磷P | 82.14 | <0.001 | 19.92 | <0.001 | 9.79 | <0.001 |
钾K | 83.87 | <0.001 | 33.02 | <0.001 | 4.71 | 0.010 |
氮磷NP | 58.18 | <0.001 | 35.03 | <0.001 | 8.88 | <0.001 |
氮钾NK | 78.60 | <0.001 | 9.25 | 0.003 | 6.31 | 0.002 |
磷钾PK | 64.85 | <0.001 | 12.65 | <0.001 | 4.72 | 0.009 |
氮磷钾NPK | 89.23 | <0.001 | 45.05 | <0.001 | 13.61 | <0.001 |
表1 不同施肥处理下菌根状态和物种对禾本科植物SLA的影响
Table 1 Effects of mycorrhizal status and species on SLA of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 88.10 | <0.001 | 53.63 | <0.001 | 13.39 | <0.001 |
磷P | 82.14 | <0.001 | 19.92 | <0.001 | 9.79 | <0.001 |
钾K | 83.87 | <0.001 | 33.02 | <0.001 | 4.71 | 0.010 |
氮磷NP | 58.18 | <0.001 | 35.03 | <0.001 | 8.88 | <0.001 |
氮钾NK | 78.60 | <0.001 | 9.25 | 0.003 | 6.31 | 0.002 |
磷钾PK | 64.85 | <0.001 | 12.65 | <0.001 | 4.72 | 0.009 |
氮磷钾NPK | 89.23 | <0.001 | 45.05 | <0.001 | 13.61 | <0.001 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 75.06 | <0.001 | 45.50 | <0.001 | 13.16 | <0.001 |
磷P | 71.33 | <0.001 | 15.60 | <0.001 | 8.80 | <0.001 |
钾K | 76.20 | <0.001 | 27.23 | <0.001 | 3.87 | 0.020 |
氮磷NP | 45.71 | <0.001 | 29.39 | <0.001 | 8.44 | <0.001 |
氮钾NK | 67.77 | <0.001 | 6.54 | 0.010 | 5.13 | 0.006 |
磷钾PK | 53.27 | <0.001 | 10.24 | 0.001 | 3.65 | 0.030 |
氮磷钾NPK | 51.61 | <0.001 | 8.63 | 0.004 | 2.74 | 0.070 |
表2 不同施肥处理下菌根状态和物种对禾本科植物叶片N含量的影响
Table 2 Effects of mycorrhizal status and species on leaf N concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 75.06 | <0.001 | 45.50 | <0.001 | 13.16 | <0.001 |
磷P | 71.33 | <0.001 | 15.60 | <0.001 | 8.80 | <0.001 |
钾K | 76.20 | <0.001 | 27.23 | <0.001 | 3.87 | 0.020 |
氮磷NP | 45.71 | <0.001 | 29.39 | <0.001 | 8.44 | <0.001 |
氮钾NK | 67.77 | <0.001 | 6.54 | 0.010 | 5.13 | 0.006 |
磷钾PK | 53.27 | <0.001 | 10.24 | 0.001 | 3.65 | 0.030 |
氮磷钾NPK | 51.61 | <0.001 | 8.63 | 0.004 | 2.74 | 0.070 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 65.01 | <0.001 | 40.10 | <0.001 | 11.63 | <0.001 |
磷P | 64.69 | <0.001 | 14.79 | <0.001 | 7.03 | 0.001 |
钾K | 73.02 | <0.001 | 23.37 | <0.001 | 2.54 | 0.080 |
氮磷NP | 40.59 | <0.001 | 6.91 | <0.001 | 7.20 | <0.001 |
氮钾NK | 69.07 | <0.001 | 6.40 | 0.010 | 4.82 | 0.009 |
磷钾PK | 43.36 | <0.001 | 8.96 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.97 | <0.001 | 9.14 | 0.003 | 1.99 | 0.140 |
表3 不同施肥处理下菌根状态和物种对禾本科植物叶片P含量的影响
Table 3 Effects of mycorrhizal status and species on P concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 65.01 | <0.001 | 40.10 | <0.001 | 11.63 | <0.001 |
磷P | 64.69 | <0.001 | 14.79 | <0.001 | 7.03 | 0.001 |
钾K | 73.02 | <0.001 | 23.37 | <0.001 | 2.54 | 0.080 |
氮磷NP | 40.59 | <0.001 | 6.91 | <0.001 | 7.20 | <0.001 |
氮钾NK | 69.07 | <0.001 | 6.40 | 0.010 | 4.82 | 0.009 |
磷钾PK | 43.36 | <0.001 | 8.96 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.97 | <0.001 | 9.14 | 0.003 | 1.99 | 0.140 |
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 64.84 | <0.001 | 39.79 | <0.001 | 11.67 | <0.001 |
磷P | 67.69 | <0.001 | 16.65 | <0.001 | 7.90 | <0.001 |
钾K | 73.00 | <0.001 | 23.35 | <0.001 | 2.54 | 0.080 |
氮磷NP | 41.12 | <0.001 | 21.17 | <0.001 | 7.39 | <0.001 |
氮钾NK | 68.00 | <0.001 | 6.38 | 0.010 | 4.65 | 0.010 |
磷钾PK | 43.37 | <0.001 | 8.98 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.98 | <0.001 | 9.15 | 0.003 | 1.99 | 0.140 |
表4 不同施肥处理下菌根状态和物种对禾本科植物叶片K浓度的影响
Table 4 Effects of mycorrhizal status and species on K concentration in leaves of gramineous plants under different fertilization treatments
施肥处理 Fertilization treatment | 菌根状态 Mycorrhizal status | 物种 Species | 菌根状态与物种的交互作用Mycorrhizal status×species | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
氮N | 64.84 | <0.001 | 39.79 | <0.001 | 11.67 | <0.001 |
磷P | 67.69 | <0.001 | 16.65 | <0.001 | 7.90 | <0.001 |
钾K | 73.00 | <0.001 | 23.35 | <0.001 | 2.54 | 0.080 |
氮磷NP | 41.12 | <0.001 | 21.17 | <0.001 | 7.39 | <0.001 |
氮钾NK | 68.00 | <0.001 | 6.38 | 0.010 | 4.65 | 0.010 |
磷钾PK | 43.37 | <0.001 | 8.98 | 0.003 | 1.92 | 0.150 |
氮磷钾NPK | 43.98 | <0.001 | 9.15 | 0.003 | 1.99 | 0.140 |
图4 施肥处理、气候因素及处理年限对草地OM植物叶片性状的影响路径R2: 相关系数Correlation coefficient. 图中所有路径均与对应的叶片性状显著相关。下同。All the paths in the figure were significantly correlated with the corresponding leaf traits. The same below.
Fig.4 Effects of fertilization,climate factors and treatment years on leaf traits of OM plants in grassland
1 | Lu J Y, Hong M, Zhao B Y N M L, et al. Response of plant community structure and biomass to long-term nutrient addition in a Stipa baicalensis steppe. Acta Prataculturae Sinica, 2022, 31(4): 22-31. |
卢俊艳, 红梅, 赵巴音那木拉, 等. 贝加尔针茅草原植物群落结构及生物量对长期养分添加的响应. 草业学报, 2022, 31(4): 22-31. | |
2 | Zhao T Q, Ouyang Z Y, Jia L Q, et al. Ecosystem services and their valuation of China grassland. Acta Ecologica Sinica, 2004, 24(6): 1101-1110. |
赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110. | |
3 | Ke Y Z, Luo J F, Zhang L, et al. Leontopodium nanum reproductive allocation and leaf functional traits in degraded grassland of Qihai-Tibetan Plateau. Journal of West China Forestry Science, 2019, 48(2): 45-51. |
柯裕州, 罗久富, 张利, 等. 青藏高原草地退化过程中矮火绒草繁殖分配及叶功能性状差异. 西部林业科学, 2019, 48(2): 45-51. | |
4 | Zong N, Shi P L, Zheng L L, et al. Restoration effects of fertilization and grazing exclusion on different degraded alpine grasslands: Evidence from a 10-year experiment. Ecological Engineering, 2021, 170: 106361. |
5 | Sheldrake M, Rosenstock N P, Mangan S, et al. Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. The International Society for Microbial Ecology Journal, 2018, 12: 2433-2445. |
6 | Liang J F, An J, Gao J Q, et al. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS One, 2018, 13(1): e0191999. |
7 | Shi Z Y, Li K, Zhu X Y, et al. The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 2020, 43: 100877. |
8 | Dong N, Prentice I C, Wright I J, et al. Components of leaf-trait variation along environmental gradients. New Phytologist, 2020, 228: 82-94. |
9 | Gazol A, Uria-Diez J, Elustondo D, et al. Fertilization triggers 11 yr of changes in community assembly in Mediterranean grassland. Journal of Vegetation Science, 2016, 27(4): 728-738. |
10 | Juliane M, Sabrina G, Adriana G, et al. Changes in leaf functional traits with leaf age: When do leaves decrease their photosynthetic capacity in Amazonian trees? Tree Physiology, 2021, 42(5): 922-938. |
11 | Arena M E, Pastur G M, Lencinas M V, et al. Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon, 2020, 6(1): e03264. |
12 | Wan S Z, Yang G S, Mao R. Responses of leaf nitrogen and phosphorus allocation patterns to nutrient additions in a temperate freshwater wetland. Ecological Indicators, 2020, 110: 105949. |
13 | Kim C, Jeong J, Park J H, et al. Growth and nutrient status of foliage as affected by tree species and fertilization in a fire-disturbed urban forest. Forests, 2015, 6(12): 2199-2213. |
14 | Li W J. Responses of species functional traits and community functional diversity to nitrogen addition in typical grassland of Yunwu Mountain, Ningxia. Jiangsu Agricultural Sciences, 2019, 47(7): 282-286. |
李维军. 宁夏云雾山典型草原物种功能性状和群落功能多样性对氮素添加的响应. 江苏农业科学, 2019, 47(7): 282-286. | |
15 | Smith S E, Read D J. Mycorrhizal symbiosis (Third Edition). San Diego, CA: Academic Press, 2008. |
16 | Bai L H, Srigger, Cao L X, et al. Research prospect and the important role of arbuscular mycorrhizae on forage grasses and grassland ecosystem. Acta Agrestia Sinica, 2013, 21(2): 214-221. |
白梨花, 斯日格格, 曹丽霞, 等. 丛枝菌根对牧草与草地生态系统的重要作用及其研究展望. 草地学报, 2013, 21(2): 214-221. | |
17 | Li K, Shi Z Y, Wang F Y. Physiological and ecological functions of arbuscular mycorrhizas and their roles in ecological restoration. Chinese Journal of Soil Science, 2017, 48(4): 996-1002. |
李珂, 石兆勇, 王发园. 丛枝菌根生理生态功能及其在生态恢复中的作用. 土壤通报, 2017, 48(4): 996-1002. | |
18 | Zou H, Zeng J. Effects of native mycorrhizal fungi infection on the seedling growth and leaf nutrition of Betula alnoides clones. Molecular Plant Breeding, 2018, 16(19): 6494-6503. |
邹慧, 曾杰. 土著菌根真菌侵染对西南桦无性系幼苗生长和叶片养分的影响. 分子植物育种, 2018, 16(19): 6494-6503. | |
19 | Luo J, Zhu C B, Dong Q, et al. Effects of arbuscular mycorrhizal fungi (AMF)on growth and leaf nutrients accumulation of flue-cured tobacco. Guizhou Agricultural Sciences, 2020, 48(11): 30-34. |
罗杰, 朱春波, 董清, 等. 丛枝菌根真菌(AMF)对烤烟生长及烟叶养分积累的影响. 贵州农业科学, 2020, 48(11): 30-34. | |
20 | Li S J, Wang H, Gou W, et al. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere. Ecology and Environmental Sciences, 2020, 29(9): 1713-1722. |
李善家, 王辉, 苟伟, 等. 混生荒漠植物叶片功能性状与其根际微生物多样性的关系. 生态环境学报, 2020, 29(9): 1713-1722. | |
21 | Sizonenko T A, Dubrovskiy Y A, Novakovskiy A B. Changes in mycorrhizal status and type in plant communities along altitudinal and ecological gradients-A case study from the Northern Urals (Russia). Mycorrhiza, 2020, 30: 445-454. |
22 | Bueno C G, Moora M, Gerz M, et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe.Global Ecology and Biogeography, 2017, 26(6): 690-699. |
23 | Menzel A, Hempel S, Manceur A M, et al. Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21: 78-88. |
24 | Hempel S, Götzenberger L, Kühn I, et al. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology, 2013, 94(6): 1389-1399. |
25 | Firn J, Mcgree J M, Harvey E, et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology & Evolution, 2019, 3: 400-406. |
26 | Koele N, Dickie I A, Jacek O, et al. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196: 845-852. |
27 | Yang S, Shi Z Y, Zhang M H, et al. Stoichiometry of carbon, nitrogen and phosphorus in shrub organs linked closely with mycorrhizal strategy in northern China. Frontiers in Plant Science, 2021, 12: 687347. |
28 | Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 2006, 16(5): 299363. |
29 | Zhang M H, Shi Z Y, Zhang S, et al. A database on mycorrhizal traits of Chinese medicinal plants. Frontiers in Plant Science, 2022, 13: 840343. |
30 | Duodu G O, Goonetilleke A, Allen C, et al. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2015, 898: 19-27. |
31 | Wu H L, Li X P, Gao J, et al. The research progress of cold resistance mechanism of gramineous plants. Journal of Bamboo Research, 2014, 33(1): 7-11. |
吴惠俐, 李雪平, 高健, 等. 禾本科植物抗寒机理的研究进展. 竹子研究汇刊, 2014, 33(1): 7-11. | |
32 | Moora M. Mycorrhizal traits and plant communities: Perspectives for integration. Journal of Vegetation Science, 2014, 25(5): 1126-1132. |
33 | Zhang H Y, Lue X T, Hartmann H, et al. Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27: 875-885. |
34 | Feng H, Meng P P, Dou Q, et al. Advances in mechanisms of nutrient exchange between mycorrhizal fungi and host plants. Chinese Journal of Applied Ecology, 2019, 30(10): 3596-3604. |
冯欢, 蒙盼盼, 豆青, 等. 菌根真菌与植物共生营养交换机制研究进展. 应用生态学报, 2019, 30(10): 3596-3604. | |
35 | Allen M F, Swenson W, Querejeta J I, et al. Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 2003, 47: 271-303. |
36 | Miatto R C, Wright I J, Batalha M A. Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant and Soil, 2016, 404(1/2): 13-33. |
37 | Wei L Y, Shangguan Z P. Relation between specific leaf areas and leaf nutritent contents of plants growing on slope lands with different farming-abandoned periods in the Loess Plateau. Acta Ecologica Sinica, 2008, 28(6): 2526-2535. |
韦兰英, 上官周平. 黄土高原不同退耕年限坡地植物比叶面积与养分含量的关系. 生态学报, 2008, 28(6): 2526-2535. | |
38 | Okada K, Okada S, Yasue K, et al. Six-year monitoring of pine ectomycorrhizal biomass under a temperate monsoon climate indicates significant annual fluctuations in relation to climatic factors. Ecological Research, 2011, 26(2): 411-419. |
39 | Bennett J A, Klironomos J. Climate, but not trait, effects on plant-soil feedback depend on mycorrhizal type in temperate forests. Ecosphere, 2018, 9(3): e02132. |
[1] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[2] | 杨鑫光, 李希来, 马盼盼, 张静, 周伟. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2021, 30(8): 98-108. |
[3] | 徐鑫磊, 宋彦涛, 赵京东, 乌云娜. 施肥和刈割对呼伦贝尔草甸草原牧草品质的影响及其与植物多样性的关系[J]. 草业学报, 2021, 30(7): 1-10. |
[4] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[5] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[6] | 再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 涂振东, 王卉, 山其米克, 艾克拜尔·伊拉洪. 长期不同施肥处理对连作高粱生长规律及产量的影响研究[J]. 草业学报, 2020, 29(8): 81-92. |
[7] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[8] | 游永亮, 李源, 赵海明, 武瑞鑫, 刘贵波. 海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响[J]. 草业学报, 2020, 29(3): 137-146. |
[9] | 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡, 张国平, 雷康宁. 地膜覆盖和施肥对半干旱区苦荞土壤水分利用及产量的影响[J]. 草业学报, 2020, 29(11): 46-56. |
[10] | 张永亮, 于铁峰, 郝凤, 高凯. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响[J]. 草业学报, 2020, 29(11): 91-101. |
[11] | 于铁峰, 刘晓静, 吴勇, 蒯佳琳. 西北干旱灌区紫花苜蓿高产田施肥效应及推荐施肥量研究[J]. 草业学报, 2019, 28(8): 15-27. |
[12] | 张礼军, 鲁清林, 白斌, 汪恒兴, 张文涛, 周刚, 白玉龙, 张耀辉. 施肥和地膜覆盖对黄土高原旱地冬小麦籽粒品质和产量的影响[J]. 草业学报, 2019, 28(4): 70-80. |
[13] | 李明雨, 黄文广, 杨君珑, 李小伟. 宁夏草原植物叶片氮磷化学计量特征及其驱动因素[J]. 草业学报, 2019, 28(2): 23-32. |
[14] | 秦燕, 刘文辉, 何峰, 仝宗永, 李向林. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响[J]. 草业学报, 2019, 28(1): 5-14. |
[15] | 谢军, 徐春丽, 陈轩敬, 王珂, 李丹萍, 张跃强, 石孝均. 不同施肥模式对玉米各器官碳氮累积和分配的影响[J]. 草业学报, 2018, 27(8): 50-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||