欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2024, Vol. 33 ›› Issue (3): 120-138.DOI: 10.11686/cyxb2023187

• 研究论文 • 上一篇    

基于环境型鉴定技术划分生态区综合评价黄淮海青贮玉米品种

岳海旺(), 魏建伟(), 王广才, 刘朋程, 陈淑萍, 卜俊周()   

  1. 河北省农林科学院旱作农业研究所,河北省农作物抗旱研究重点实验室,河北 衡水 053000
  • 收稿日期:2023-06-08 修回日期:2023-07-05 出版日期:2024-03-20 发布日期:2023-12-27
  • 通讯作者: 卜俊周
  • 作者简介:E-mail: bujunzhou@126.com
    岳海旺(1982-),男,河北晋州人,副研究员,硕士。E-mail: yanjiu1982@163.com
    魏建伟(1980-),男,河北迁安人,副研究员,硕士。E-mail: hengshuiwei@163.com第一联系人:共同第一作者These authors contributed equally to this work.
  • 基金资助:
    河北省“三三三人才工程”人才培养项目(A202101056);河北省重点研发计划(20326305D);国家玉米产业技术体系(CARS-02);黄淮海北部(河北)早熟高产适宜机械化玉米新种质创制与应用(2022YFD1201002-3);河北省玉米现代种业科技创新团队(21326319D);河北省农林科学院科技创新专项课题(2023KJCXZX-HZS-1)

Comprehensive evaluation of silage maize hybrids in the Huanghuaihai plain based on mega-environments delineated using envirotyping techniques

Hai-wang YUE(), Jian-wei WEI(), Guang-cai WANG, Peng-cheng LIU, Shu-ping CHEN, Jun-zhou BU()   

  1. Dryland Farming Institute,Hebei Academy of Agriculture and Forestry Sciences,Hebei Provincial Key Laboratory of Crops Drought Resistance Research,Hengshui 053000,China
  • Received:2023-06-08 Revised:2023-07-05 Online:2024-03-20 Published:2023-12-27
  • Contact: Jun-zhou BU

摘要:

气候因子对农作物区域试验丰产性和适应性的影响较大。为准确评价青贮玉米品种在黄淮海夏播区的适应性、丰产性和稳定性,采用2002-2021年20 a的气象数据资料,依据环境型鉴定技术(ET)对2022年青贮玉米区域试验中12个试点进行生态区(ME)划分,依据品种-性状(GT)双标图和品种-产量×性状(GYT)双标图对15个参试品种的生物干重、干物质含量、倒伏率、倒折率、空秆率、小斑病、弯孢叶斑病、南方锈病、茎腐病、瘤黑粉病、生育期、株高和穗位高13个农艺性状以及全株淀粉含量、中性洗涤纤维含量、酸性洗涤纤维含量和粗蛋白质含量4个品质指标进行综合评价。结果表明,加性主效应和积性互作效应(AMMI)方差分析被测的13个农艺性状中基因型效应和环境效应均达到了极显著水平(P<0.01),除穗位高外其余性状基因型与环境互作效应也达到了极显著水平。6个省份的12个试点被划分为4个生态区,不同生态区间气象因子呈较大的变化趋势。生物干重与株高、穗位高呈极显著正相关,而与倒伏率、倒折率呈极显著负相关。GYT双标图与生态区结合,可以鉴别出不同生态区的优势品种。参试品种中渝单805在划定的4个生态区中均表现出丰产性突出、稳定性较好的特征,属于丰产稳产型品种。皖农科青贮8号、成单3601、正大511和衡玉1996等品种在ME2、ME3和ME4中丰产性和稳定性较好。安科青2号和KNX2202等品种在ME1和ME4中丰产性较差,金诚6在ME2和ME3中丰产性和稳定性均较差。基于环境型鉴定技术划分生态区和GYT双标图相结合评价青贮玉米品种的丰产性、稳定性和适应性,可以实现品种推广的精细定位。

关键词: 青贮玉米品种, 生态区, 基因型与环境互作, 气候因子, GYT双标图

Abstract:

In the context of global climate change, understanding the climate variables that are most strongly associated with environmental kinships can be useful for selecting hybrids that are better suited to growth in environments with large climatic variations. The main goal of this study was to integrate envirotyping techniques (ET) with a genotype-by-yield×trait (GYT) biplot experiment to evaluate the adaptability, productivity, and stability of silage maize (Zea mays) genotypes growing on the Huanghuaihai plain in China. We used ET and meteorological data from 2002 to 2021 to classify the 12 trial sites in a regional trial of silage maize into mega-environments (MEs). Genotype-by-trait (GT) biplot and GYT biplot experiments were conducted to evaluate 15 silage maize hybrids in the Huanghuaihai National Trial in 2022 in terms of their dry yield, dry matter content, growth period, plant height, ear height, lodging rate, discount rate, empty ear rate, whole plant starch content, neutral detergent fiber content, acid detergent fiber content, and crude protein content. The incidence of common smut, stalk rot, southern leaf blight, curvular leaf spot, and southern corn rust in the 15 silage maize hybrids was also recorded. Additive main effects and multiplicative interaction analyses indicated that the studied agronomic traits were highly significantly (P<0.01) affected by genotype and environment, and the genotype×environment interaction effect reached highly significant levels for all the traits except ear height. Considering 20 years of climate information and 19 environmental covariables, we identi?ed four MEs in the Huanghuaihai plain region; i.e., the ME analysis grouped locations that share similar long-term weather patterns. Correlation analyses showed that dry yield was significantly and positively correlated with plant height and ear height and negatively correlated with lodging rate and discount rate. The GYT biplot analysis combined with MEs identified the promising genotypes in different MEs. Among the evaluated genotypes, Yudan805 showed outstandingly high yields and good stability in the four MEs, and was the most promising genotype across the four MEs. Wannongkeqingzhu8, Chengdan3601, Zhengda511, and Hengyu1996 showed good productivity and stability in ME2, ME3, and ME4. Genotypes such as Ankeqing2 and KNX2202 were less productive in ME1 and ME4, and Jincheng6 was less productive and stable in ME2 and ME3. The combination of ET to delineate MEs and the GYT biplot method to evaluate the mean performance and stability of the 15 tested genotypes revealed the overall performance of the different genotypes across a range of environments. These results provide a theoretical basis for integrated multi-trait evaluation of silage maize genotypes growing on the Huanghuaihai plain.

Key words: silage maize hybrid, mega-environment, genotype-environment interaction, climatic variables, genotype by yield×trait biplot