草业学报 ›› 2014, Vol. 23 ›› Issue (3): 104-109.DOI: 10.11686/cyxb20140311
罗栋1,2,3,钱永强1,2,刘俊祥1,2,韩蕾1,2,李伟1,2,孙振元1,2,*
收稿日期:
2013-05-08
出版日期:
2014-06-20
发布日期:
2014-06-20
通讯作者:
E-mail:sunzy@163.net
作者简介:
罗栋(1984-),男,广西钦州人,博士。E-mail:rbld@sina.com
基金资助:
LUO Dong1,2,3,QIAN Yong-qiang1,2,LIU Jun-xiang1,2,HAN Lei1,2,LI Wei1,2,SUN Zhen-yuan1,2
Received:
2013-05-08
Online:
2014-06-20
Published:
2014-06-20
摘要: 本实验以匍匐茎型克隆植物野牛草为材料,通过测定其在同质营养和3个斑块尺度的异质营养条件下生长指标、形态指标和叶绿素荧光参数的变化,研究野牛草对异质营养的表型可塑性反应。野牛草在尺度为25 cm×25 cm异质营养条件下会产生更多的分株、丛和分枝,积累更多的生物量,具有较高的Fv/Fm和ΦPSⅡ,生长状况要好于其他营养条件,但根系长度和间隔子长度并没有明显的变化。结果表明,生理整合调控了野牛草的表型可塑性,提高了母株的叶绿素荧光特性,增加了克隆分株对养分的吸收、利用能力,使野牛草在异质营养条件下的生长状况好于同质营养条件,特别是在尺度为25 cm×25 cm的异质营养条件下效果更为明显。
中图分类号:
罗栋,钱永强,刘俊祥,韩蕾,李伟,孙振元. 克隆植物野牛草对异质营养的表型可塑性响应[J]. 草业学报, 2014, 23(3): 104-109.
LUO Dong,QIAN Yong-qiang,LIU Jun-xiang,HAN Lei,LI Wei,SUN Zhen-yuan. Phenotypic responses of a clonal plant (Buchloe dactyloides) to nutrient heterogeneity[J]. Acta Prataculturae Sinica, 2014, 23(3): 104-109.
Reference:[1]Lechowicz M J, Bell G. The ecology and genetics of fitness in forest plants. 2. Microspatial heterogeneity of the edaphic environment[J]. Journal of Ecology, 1991, 79: 687-696.[2]Caldwell M M, Pearcy R W. Explotation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground[M]. San Diego: Aeademic Press, 1994.[3]Ryel R J, Caldwell M M, Manwaring J H. Temporal dynamics of soil spatial heterogeneity in sangebrush-wheatgrass steppe during a growing season[J]. Plant and Soil, 1996, 184: 299-309.[4]〖JP2〗Stuefer J F, de Kroon H, During H. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant[J]. Functional Ecology, 1996, 10: 328-334.〖JP〗[5]Cain M L, Subler S, Evans J P, et al. Sampling spatial and temporal variation in soil nitrogen[J]. Oecologia, 1999, 118: 397-404.[6]Hutchings M J, Wijesinghe D K, John E A. The effects of heterogeneous nutrient supply on plant performance: a survey of responses, with special reference to clonal herbs[A]. In: Hutchings M J, John E A, Stewart A J A. The Ecological Consequences of Environmental Heterogeneity[M]. Oxford: Blackwell, 2000: 91-110.[7]Oborny B, Bartha S. Clonality in plant communities-an overview[J]. Abstracta Botanica, 1995, 19: 115-127.[8]KlimeL, Klimesova J, Hendriks R,et al. Clonal plant architecture: A comparative analysis of form and function[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. The Netherlands, Leiden: Backhuys Publishers, 1997: 1-29.[9]Hutchings M J, de Kroon H. Foraging in Plant: The role of morphological plasticity in resource acquisition[J]. Advance in Ecological Research, 1994, 25: 159-238. [10]Huber H, Fijan A, During H. A comparative study of spacer plasticity in erect and stoloniferous herbs[J]. Oikos, 1998, 81: 576-586.[11]de Kroon H, Schieving F. Resource partitioning in relation to clonal growth strategy[A]. In: van Groenendael J, de Kroon H. Clonal Growth in Plants: Regulation and Function[M]. The Netherlands, The Hague: SPB Academic Publishing, 1990: 113-130.[12]Jackson R B, Caldwell M M. Integrating resource heterogeneity and plant plasticity: modeling nitrate and phosphate uptake in a patchy soil environment[J]. Journal of Ecology, 1996, 84: 891-903.[13]Weinig C, Delph L F. Phenotypic plasticity early in life constrains developmental responses later[J]. Evolution, 2001, 55: 930-936.[14]〖JP2〗Pigliucci M, Pollard H, Cruzan M B. Comparative studies of evolutionary responses to light environments inArabidopsis[J]. American Naturalist, 2003, 161: 68-82.〖JP〗[15]de Kroon H, Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered[J]. Journal of Ecology, 1995, 83: 143-152.[16]Skálová H, Krahulec F. The response of three Festuca rubra clones to changes in light quality and plant density[J]. Functional Ecology, 1992, 6: 282-290.[17]Cain M L. Consequences of foraging in clonal plant species[J]. Ecology, 1994, 75: 933-944.[18]Dong M, de Kroon H. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes[J]. Oikos, 1994, 70: 99-106.[19]Oborny B. Spacer length in clonal plants and the efficiency of resource capture in heterogeneous environments: a Monte Carlo simulation[J]. Folia Geobotanica Phytotaxonomica, 1994, 29(2): 139-158.[20]Oborny B, Cain M L. Models of spatial spread and foraging in clonal plants[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. The Netherlands, Leiden: Backhuys Publishers, 1997: 155-183.[21]Wijesinghe D K, Hutchings M J. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea[J]. Journal of Ecology, 1997, 85: 17-28.[22]Wijesinghe D K, John E A, Beurskens S, et al. Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species[J]. Journal of Ecology, 2001, 89: 972-983.[23]Day K J, Hutchings M J, John E A. The effects of spatial pattern of nutrient supply on the early stages of growth in plant populations[J]. Journal of Ecology, 2003, 91: 305-315.[24]Day K J, Hutchings M J, John E A. The effects of spatial pattern of nutrient supply on yield, structure, and mortality in plant populations[J]. Journal of Ecology, 2003, 91: 541-553.[25]de Kroon H, Huber H, Stuefer J F, et al. A modular concept of phenotypic plasticity in plants[J]. New Phytologist, 2005, 166: 73-82.[26]Liu J X, Sun Z Y, Gou P, et al. Response of photosynthetic physiology of perennial ryegrass (Lolium perenne) to Cd2+ stress[J]. Acta Prataculturae Sinica, 2012, 12(3): 191-197.[27]Zhang Z ,Yang S, Du G J, et al. Effects of shade on the photosynthetic characteristics and chlorophyll fluorescence parameters of three kinds of leguminous forage[J]. Acta Prataculturae Sinica, 2013, 22(5): 212-219.[28]Wang J X, Wang J C, Wang R J, et al. Effects of exogenous nitric oxide on photosynthetic and bioluminescent characteristics in ryegrass seedlings under osmotic stress[J]. Acta Prataculturae Sinica, 2013, 22(1): 210-216.[29]Dong M, Alaten B. Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grassPsammochloa villosa in an Inner Mongolian dune, China[J]. Plant Ecology, 1999, 141: 53-58.[30]〖JP2〗Salzman A G, Parker M A. Neighbours ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment[J]. Oecologia, 1985, 65: 273-277.〖JP〗[31]Friedman D, Alpert P. Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich[J]. Oecologia, 1991, 86: 76-80.[32]Evans J P, Whitney S. Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle bonariensis (Apiaceae)[J]. American Journal of Botany, 1992, 79: 1344-1347.[33]Hutchings M J, Price A C P. Does physiological integration enable clonal herbs to integrate the effects of environmental heterogeneity?[J]. Plant Species Biology, 1993, 8: 95-105.[34]Alpert P, Stuefer J F. Division of labour in clonal plants[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. Leiden: Backhuys Publishers, 1997: 137-154.[35]Roiloa S R, Retuerto R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions[J]. Environmental and experimental botany, 2007, 61(1): 1-9.[36]Birch C P D, Hutchings M J. Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea[J]. Journal of Ecology, 1994, 82: 653-664.[37]Einsmann J C, Jones R H, Pu M, et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms[J]. Journal of Ecology, 1999, 87: 609-619.[38]Wijesinghe D K, Hutchings M J. The effects of environmental heterogeneity on the performance of Glechoma hederacea: the interaction between patch contrast and patch scale[J]. Journal of Ecology, 1999, 87: 860-872.[39]Huber-Sannwald E, Pyke D A, Caldwell M M, et al. Effects of nutrient patches and root system on the clonal plasticity of a rhizomatous grass[J]. Ecology, 1998, 79: 2267-2280.[40]Welham C V J, Turkington R, Sayre C. Morphological plasticity of white clover (Trifolium repens L.) in response to spatial and temporal resource heterogeneity[J]. Oecologia, 2002, 130: 231-238.[41]Macek P, Lep J. The effect of environmental heterogeneity on clonal behaviour of Prunella vulgaris L.[J]. Plant Ecology, 2003, 168: 31-43.[42]Jackson R B, Caldwell M M. Geosattistical pattern of soil heterogeneity around individual perennial plants[J]. Journal of Ecology, 1993, 81: 683-692.[43]Jackson R B, Caldwell M M. The scale of nutrient heterogeneity around individual Plants and its quantification with geostatistics[J]. Ecology, 1993, 74: 612-614.[44]Alpert P, Holzapfel C, Slominski C. Differences in performance between genotypes with different degrees of resource sharing in Fragaria chiloensis[J]. Journal of Ecology, 2003, 91: 27-35.[45]Roiloa S R, Retuerto R. Physiological integration ameliorates effects of serpentine soils in the clonal herbFragaria vesca[J]. Physiologia Plantarum, 2006, 128: 662-676.参考文献:[1]Lechowicz M J, Bell G. The ecology and genetics of fitness in forest plants. 2. Microspatial heterogeneity of the edaphic environment[J]. Journal of Ecology, 1991, 79: 687-696.[2]Caldwell M M, Pearcy R W. Explotation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground[M]. San Diego: Aeademic Press, 1994.[3]Ryel R J, Caldwell M M, Manwaring J H. Temporal dynamics of soil spatial heterogeneity in sangebrush-wheatgrass steppe during a growing season[J]. Plant and Soil, 1996, 184: 299-309.[4]〖JP2〗Stuefer J F, de Kroon H, During H. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant[J]. Functional Ecology, 1996, 10: 328-334.〖JP〗[5]Cain M L, Subler S, Evans J P,et al. Sampling spatial and temporal variation in soil nitrogen[J]. Oecologia, 1999, 118: 397-404.[6]Hutchings M J, Wijesinghe D K, John E A. The effects of heterogeneous nutrient supply on plant performance: a survey of responses, with special reference to clonal herbs[A]. In: Hutchings M J, John E A, Stewart A J A. The Ecological Consequences of Environmental Heterogeneity[M]. Oxford: Blackwell, 2000: 91-110.[7]Oborny B, Bartha S. Clonality in plant communities-an overview[J]. Abstracta Botanica, 1995, 19: 115-127.[8]Klime L, Klimesova J, Hendriks R,et al. Clonal plant architecture: A comparative analysis of form and function[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. The Netherlands, Leiden: Backhuys Publishers, 1997: 1-29.[9]Hutchings M J, de Kroon H. Foraging in Plant: The role of morphological plasticity in resource acquisition[J]. Advance in Ecological Research, 1994, 25: 159-238. [10]Huber H, Fijan A, During H. A comparative study of spacer plasticity in erect and stoloniferous herbs[J]. Oikos, 1998, 81: 576-586.[11]de Kroon H, Schieving F. Resource partitioning in relation to clonal growth strategy[A]. In: van Groenendael J, de Kroon H. Clonal Growth in Plants: Regulation and Function[M]. The Netherlands, The Hague: SPB Academic Publishing, 1990: 113-130.[12]Jackson R B, Caldwell M M. Integrating resource heterogeneity and plant plasticity: modeling nitrate and phosphate uptake in a patchy soil environment[J]. Journal of Ecology, 1996, 84: 891-903.[13]Weinig C, Delph L F. Phenotypic plasticity early in life constrains developmental responses later[J]. Evolution, 2001, 55: 930-936.[14]〖JP2〗Pigliucci M, Pollard H, Cruzan M B. Comparative studies of evolutionary responses to light environments in Arabidopsis[J]. American Naturalist, 2003, 161: 68-82.〖JP〗[15]de Kroon H, Hutchings M J. Morphological plasticity in clonal plants: the foraging concept reconsidered[J]. Journal of Ecology, 1995, 83: 143-152.[16]Skálová H, Krahulec F. The response of three Festuca rubra clones to changes in light quality and plant density[J]. Functional Ecology, 1992, 6: 282-290.[17]Cain M L. Consequences of foraging in clonal plant species[J]. Ecology, 1994, 75: 933-944.[18]Dong M, de Kroon H. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes[J]. Oikos, 1994, 70: 99-106.[19]Oborny B. Spacer length in clonal plants and the efficiency of resource capture in heterogeneous environments: a Monte Carlo simulation[J]. Folia Geobotanica Phytotaxonomica, 1994, 29(2): 139-158.[20]Oborny B, Cain M L. Models of spatial spread and foraging in clonal plants[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. The Netherlands, Leiden: Backhuys Publishers, 1997: 155-183.[21]Wijesinghe D K, Hutchings M J. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea[J]. Journal of Ecology, 1997, 85: 17-28.[22]Wijesinghe D K, John E A, Beurskens S,et al. Root system size and precision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species[J]. Journal of Ecology, 2001, 89: 972-983.[23]Day K J, Hutchings M J, John E A. The effects of spatial pattern of nutrient supply on the early stages of growth in plant populations[J]. Journal of Ecology, 2003, 91: 305-315.[24]Day K J, Hutchings M J, John E A. The effects of spatial pattern of nutrient supply on yield, structure, and mortality in plant populations[J]. Journal of Ecology, 2003, 91: 541-553.[25]de Kroon H, Huber H, Stuefer J F,et al. A modular concept of phenotypic plasticity in plants[J]. New Phytologist, 2005, 166: 73-82.[26]刘俊祥, 孙振元, 勾萍, 等. 镉胁迫下多年生黑麦草的光合生理响应[J]. 草业学报, 2012, 12(3): 191-197.[27]张哲, 杨姝, 杜桂娟, 等. 遮阴对三种豆科牧草光合特性和叶绿素荧光参数的影响[J]. 草业学报, 2013, 22(5): 212-219.[28]刘建新, 王金成, 王瑞娟, 等. 外源一氧化氮对渗透胁迫下黑麦草幼苗光合和生物发光特性的影响[J]. 草业学报, 2013, 22(1): 210-216.[29]Dong M, Alaten B. Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China[J]. Plant Ecology, 1999, 141: 53-58.[30]〖JP2〗Salzman A G, Parker M A. Neighbours ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment[J]. Oecologia, 1985, 65: 273-277.〖JP〗[31]Friedman D, Alpert P. Reciprocal transport between ramets increases growth of Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich[J]. Oecologia, 1991, 86: 76-80.[32]Evans J P, Whitney S. Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle bonariensis (Apiaceae)[J]. American Journal of Botany, 1992, 79: 1344-1347.[33]Hutchings M J, Price A C P. Does physiological integration enable clonal herbs to integrate the effects of environmental heterogeneity?[J]. Plant Species Biology, 1993, 8: 95-105.[34]Alpert P, Stuefer J F. Division of labour in clonal plants[A]. In: de Kroon H, van Groenendael J. The Ecology and Evolution of Clonal Plants[M]. Leiden: Backhuys Publishers, 1997: 137-154.[35]Roiloa S R, Retuerto R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions[J]. Environmental and experimental botany, 2007, 61(1): 1-9.[36]Birch C P D, Hutchings M J. Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea[J]. Journal of Ecology, 1994, 82: 653-664.[37]Einsmann J C, Jones R H, Pu M,et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms[J]. Journal of Ecology, 1999, 87: 609-619.[38]Wijesinghe D K, Hutchings M J. The effects of environmental heterogeneity on the performance of Glechoma hederacea: the interaction between patch contrast and patch scale[J]. Journal of Ecology, 1999, 87: 860-872.[39]Huber-Sannwald E, Pyke D A, Caldwell M M,et al. Effects of nutrient patches and root system on the clonal plasticity of a rhizomatous grass[J]. Ecology, 1998, 79: 2267-2280.[40]Welham C V J, Turkington R, Sayre C. Morphological plasticity of white clover (Trifolium repens L.) in response to spatial and temporal resource heterogeneity[J]. Oecologia, 2002, 130: 231-238.[41]Macek P, Lep J. The effect of environmental heterogeneity on clonal behaviour of Prunella vulgaris L.[J]. Plant Ecology, 2003, 168: 31-43.[42]Jackson R B, Caldwell M M. Geosattistical pattern of soil heterogeneity around individual perennial plants[J]. Journal of Ecology, 1993, 81: 683-692.[43]Jackson R B, Caldwell M M. The scale of nutrient heterogeneity around individual Plants and its quantification with geostatistics[J]. Ecology, 1993, 74: 612-614.[44]Alpert P, Holzapfel C, Slominski C. Differences in performance between genotypes with different degrees of resource sharing in Fragaria chiloensis[J]. Journal of Ecology, 2003, 91: 27-35.[45]Roiloa S R, Retuerto R. Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca[J]. Physiologia Plantarum, 2006, 128: 662-676. |
[1] | 郭郁频,米福贵,闫利军,任永霞,吕世杰,伏兵哲. 不同早熟禾品种对干旱胁迫的生理响应及抗旱性评价[J]. 草业学报, 2014, 23(4): 220-228. |
[2] | 杨海霞,刘润进,郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响[J]. 草业学报, 2014, 23(4): 195-203. |
[3] | 韩朝,刘洋,董慧,常智慧. 污泥对高羊茅抗旱性的影响研究[J]. 草业学报, 2014, 23(3): 127-135. |
[4] | 张怀山,赵桂琴,栗孟飞,夏曾润,王春梅. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答[J]. 草业学报, 2014, 23(2): 180-188. |
[5] | 彭燕,李州. 干旱预处理对抗旱性不同的2个草地早熟禾品种耐热性能的影响[J]. 草业学报, 2013, 22(5): 229-238. |
[6] | 俞乐,刘拥海,周丽萍,梁国球. 干旱胁迫下结缕草叶片抗坏血酸与相关生理指标变化的品种差异研究[J]. 草业学报, 2013, 22(4): 106-115. |
[7] | 张乐新,苏蔓,马甜,马兴勇,闫学青,彭献军,陈双燕,程丽琴,刘公社. 羊草Δ1-吡咯琳-5-羧酸合成酶(LcP5CS1)基因的克隆与分析[J]. 草业学报, 2013, 22(4): 197-204. |
[8] | 陈敏,侯新村,范希峰,武菊英,潘远智. 细叶芒苗期耐旱性分析[J]. 草业学报, 2013, 22(3): 184-. |
[9] | 蒋乔峰,陈静波,宗俊勤,李珊,褚晓晴,郭海林,刘建秀. 盐胁迫下磷素对沟叶结缕草生长及Na+和K+含量的影响[J]. 草业学报, 2013, 22(3): 162-. |
[10] | 李剑,张金林,王锁民,郭强. 小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析[J]. 草业学报, 2013, 22(2): 140-149. |
[11] | 李晓宇,蔺吉祥,李秀军,穆春生. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应[J]. 草业学报, 2013, 22(1): 201-209. |
[12] | 曾亮,袁庆华,王方,王瑜. 冰草属植物种质资源遗传多样性的ISSR分析[J]. 草业学报, 2013, 22(1): 260-267. |
[13] | 马兴勇,彭献军,苏蔓,张乐新,周庆源,陈双燕,程丽琴,刘公社. 羊草DREB转录因子的系统发育和功能研究[J]. 草业学报, 2012, 21(6): 190-197. |
[14] | 金晓明,刘及东,卢欣石,孙兆军. 米氏冰草营养繁殖潜在种群与现实种群的关系[J]. 草业学报, 2012, 21(6): 228-234. |
[15] | 郭海林,陈宣,薛丹丹,刘建秀. 结缕草属植物部分外部性状的遗传分析[J]. 草业学报, 2012, 21(5): 134-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||