草业学报 ›› 2009, Vol. 18 ›› Issue (5): 235-243.
张一弓,张丽静,傅华*
收稿日期:
2008-11-20
出版日期:
2009-10-20
发布日期:
2009-10-20
作者简介:
张一弓(1984-),男,甘肃兰州人,在读硕士。
基金资助:
ZHANG Yi-gong, ZHANG Li-jing, FU Hua
Received:
2008-11-20
Online:
2009-10-20
Published:
2009-10-20
摘要: 维生素E是一种脂溶性的抗氧化剂,在高等植物和蓝细菌光合器官中合成。其天然产物有8种类型, 分别为α、β、γ、δ-生育酚和α、β、γ、δ-生育三酚,对植物、动物和人类都具有十分重要的生理作用。笔者通过对近30年文献的回顾,综述了维生素E在植物体内合成途径中相关酶基因的克隆及其在转基因植物中的表达和在植物逆境胁迫下的作用,并展望了研究方向。目前已从模式植物拟南芥和集胞蓝藻中克隆出了与维生素E合成相关的所有酶基因,约有26种植物中维生素E合成相关酶基因也已被克隆,维生素E生理功能被初步阐明。未来的研究尚需进一步证实其生理功能及其关系,加强对生育三酚的研究,还应当侧重运用已知基因,结合最新的基因工程、作物育种技术,将生育酚的重要价值进行应用和推广。
中图分类号:
张一弓,张丽静,傅华. 植物维生素E合成酶基因克隆及其逆境生理研究进展[J]. 草业学报, 2009, 18(5): 235-243.
ZHANG Yi-gong, ZHANG Li-jing, FU Hua. Progress in vitamin E synthesis-related enzyme gene cloning and stress physiology in plants[J]. Acta Prataculturae Sinica, 2009, 18(5): 235-243.
[1]Fryer M J. The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant, Cell & Environment, 1992, 15:381-392. Soll J, Schultz G. Comparison of geranlgeranyl and phytyl substituted methylquinols in the tocopherol synthesis of spinach chloroplasts. Biochemical Biophysical Research Communications, 1979, 91:715-720. [2] KamalEldin A, Appelqvist L A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996, 31:671-701. [3] Brigelius-Floh E R, Traber M G. Vitamin E: Function and metabolism. The Journal of the Federation of American Societies for Experimental Biology, 1999, 13:1145-1155. [4] Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: An overview. Current Pharmaceutical Design, 2004, 10(14):1677-1694. [5] Ajjawi I, Shintani D. Engineered plants with elevated vitamin E: A nutraceutical success story. Trends in Biotechnology, 2004, 22(3):104-107. [6] 肖雄. 维生素E的研究与应用. 畜禽业,2002,4:24-26. [7] 雷炳福. 我国天然维生素E产业化前景初探. 中国油脂, 2003,28(4):49-51. [8] Velasco L, Goffman F D, Pujadas-Salva A J. Fatty acids and tocochromanols in seeds of Orobanche. Phytochemistry, 2000, 54:295-300. [9] Hess K R, Zhang W, Baggerly K A, et al. Microarrays:Handling the deluge of data and extracting reliable information. Trends in Biotechnology, 2001, 19:463-468. [10] DellaPenna D, Pogson B J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annual Review Plant Biology, 2006, 57:711-738. [11] DellaPenna D. A decade of progress in understanding vitamin E synthesis in plants. Journal of Plant Physiology, 2005, 162:729-737. [12]Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organism. Current Opinion in Plant Biology, 2007, 10:260-265. [13] Collakova E, DellaPenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiology, 2003, 133:930-940. [14] Collin V C, Eymery F, Genty B, et al. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant, Cell & Environment, 2008, 31:244-257. [15]Hofius D, Sonnewald U. Vitamin E biosynthesis: Biochemistry meets cell biology. Trends in Plant Science, 2003, 8:6-8. [16]Hu Y K. Molecular biology and biotechnology improvement of vitamin E biosynthesis in plant. China Biothchnology, 2004, 24(1):32-35. [17] Cahoon E B, Hall S E, Ripp K G, et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 2003, 21:1082-1087. [18] Falk J, Andersen G, Kernebeck B, et al. Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. Federation of European Biochemical Societies Letters, 2003, 540:35-40. [19] 潘卫东,李晓峰,陈双燕,等. 植物维生素E合成相关酶基因的克隆及其在体内功能研究进展. 植物学通报, 2006, 23(1):68-77. [20] 王永飞,马三梅. 利用基因工程提高植物维生素E营养品质的策略. 广西植物, 2006, 26(1):76-79. [21] Norris S R, Shen X, DellaPenna D. Complementation of the Arabidopsis pds1 mutation with the gene encoding phydroxyphenylpyruvate dioxygenase. Plant Physiology, 1998, 117:1317-1323. [22] Garcia I, Rodgers M, Lenne C, et al. Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochemical Journal, 1997, 352:761-769. [23] Dahnhardt D, Falk J, Appel J, et al. The hydroxyphenylpyruvate dioxygenase from Synechocystis sp. PCC 6803 is notrequired for plastoquinone biosynthesis. Federation of European Biochemical Societies Letters, 2002, 523:177-181. [24] Tsegaye Y, Shintani D K, DellaPenna D. Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiology and Biochemistry, 2002, 40:913-920. [25] Shintani D, DellaPenna D. Elevating the vitamin E content of plants through metabolic engineering. Science, 1998, 282:2098-2100. [26] Collakova E, DellaPenna D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2001, 127:1113-1124. [27] Savidge B, Weiss J D, Wong Y H H, et al. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiology, 2002, 129:321-332. [28] Schledz M, Seidler A, Beyer P, et al. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. Federation of European Biochemical Societies Letters, 2001, 499:15-20. [29]Oster U, Bauer C E, Rudiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. Journal of Biological Chemistry, 1997, 272:9671-9676. [30] Porfirova S, Bergmuller E, Tropf S, et al. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proceeding of National Academy of Science of the USA, 2002, 99:12495-12500. [31] Sattler S E, Cahoon E B, Coughlan S J, et al. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiology, 2003, 132:2184-2195. [32] Provencher L M, Miao L, Sinha N, et al. Sucrose exportdefective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell, 2001, 13:1127-1141. [33] Hofius D, Hajirezaei M R, Geiger M, et al. RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiology, 2004, 135:1256-1268. [34] Kanwischer M, Porfirova S, Bergmuller E, et al. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology, 2005, 137:713-723. [35] Collakova E, DellaPenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiology, 2003, 131:632-642. [36] Shintani D K, Cheng Z, DellaPenna D. The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. Federation of European Biochemical Societies Letters, 2002, 511:1-5. [37] Cheng Z, Sattler S, Maeda H, et al. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell, 2003, 15:2343-2356. [38] Van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: From Arabidopsis mutant to soy oil. Plant Cell, 2003, 15:3007-3019. [39] Y amauchi R, Matsushita S. Light-induced lipid peroxidation in isolated chloroplasts form spinach leaves and role of alphatocopherol Vitamin E.Agricultural and Biological Chemistry, 1979, 43:2157-2161. [40] Lichtenthaler H K, Prenzel U, Douce R, et al. Localization of prenylquinones in the envelope of spinach-chloroplasts. Biochimica et Biophysica Acta, 1981, 641:99-105. [41] Heber U, Heldt H W. The chloroplast envelope-structure, function, and role in leaf metabolism. Annual Review of Plant Physiology, 1981, 32:139-168. [42] Soll J, Schultz G, Joyard J, et al. Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach-chloroplasts. Archives of Biochemistry and Biophysics, 1985, 238:290-299. [43] Muller-Moule P, Havaux M, Niyogi K K. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiology, 2003, 133:748-760. [44] Havaux M, Bonfils J P, Lutz C, et al. Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiology, 2000, 124:273-284. [45] Golan T, Muller-Moule P, Niyogi K K. Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant, Cell & Environment, 2006, 29:879-887. [46] Gosset F R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton. Crop Science, 1994, 34 :706-714. [47] Grasses T, Grimm B, Koroleva O, et al. Loss of a-tocopherol in tobacco plants with decreased geranylgeranyl reductase activity does not modify photosynthesis in optimal growth conditions but increases sensitivity to high-light stress. Planta, 2001, 213:620-628. [48] Havaux M, Lutz C, Grimm B. Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiology, 2003, 132: 300-310. [49] Maeda H, Song W, Sage T L, et al. Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell, 2006, 18: 2710-2732. [50]Maeda H, Sakuragi Y, Bryant D A, et al. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiology, 2005, 138:1422-1435. [51] Havaux M, Eymery F, Porfirova S, et al. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell, 2005, 17:3451-3469. [52] Sattler S E, Gilliland L U, Magallanes-Lundback M, et al. Vitamin E is essential for seed longevity, and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16:1419-1432. [53] 郭娟. 拟南芥生育酚环化酶基因(VTE1)与烟草维生素E含量和抗性关系的研究. 福建:厦门大学,2006. [54] Luis P, Behnke K, Toepel J, et al. Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess. Plant, Cell & Environment, 2006, 29: 2043-2054. [55]郭娟,刘小丽,金冶平,等. 拟南芥VTE1过量表达可以增加维生素E 含量和提高烟草植株耐盐性. 应用与环境生物学报,2006,12(4):468-471. [56] Liu X L, Hua X J, Guo J, et al. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnology Letters, 2008, 30:1275-1280. |
[1] | 周欣,左小安,赵学勇,王少昆,罗永清,岳祥飞,张腊梅. 半干旱沙地生境变化对植物地上生物量及其碳、氮储量的影响[J]. 草业学报, 2014, 23(6): 36-44. |
[2] | 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报, 2014, 23(4): 322-329. |
[3] | 鲁艳,雷加强,曾凡江,徐立帅,彭守兰,刘国军. NaCl处理对梭梭生长及生理生态特征的影响[J]. 草业学报, 2014, 23(3): 152-159. |
[4] | 王丹,龚春霞,苟亚峰,周路,朱军保,高剑峰. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103. |
[5] | 段晓凤,张磊,卫建国,朱永宁,杨洋,金飞. 宁夏盐池牧草返青期预测及生产潜力初步分析[J]. 草业学报, 2014, 23(2): 1-8. |
[6] | 陶冶,张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23(2): 38-48. |
[7] | 任志国, 陈亚鹏,李卫红,刘树宝. 地下水埋深对塔里木河下游建群种植物叶片δ13C值的影响[J]. 草业学报, 2014, 23(2): 76-82. |
[8] | 南丽丽,师尚礼,张建华. 不同根型苜蓿根系发育能力研究[J]. 草业学报, 2014, 23(2): 117-124. |
[9] | 赵财,周海燕,柴强,黄高宝,刘辉娟,朱静. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应[J]. 草业学报, 2014, 23(2): 133-139. |
[10] | 彭岚清,李欣勇,齐晓,岳彦红,范树高,李树成,王彦荣. 紫花苜蓿品种根部特性与持久性和生物量的关系[J]. 草业学报, 2014, 23(2): 147-153. |
[11] | 李辉,康健,赵耕毛,尹晓明,梁明祥. 盐胁迫对菊芋干物质和糖分积累分配的影响[J]. 草业学报, 2014, 23(2): 160-170. |
[12] | 张怀山,赵桂琴,栗孟飞,夏曾润,王春梅. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答[J]. 草业学报, 2014, 23(2): 180-188. |
[13] | 王若梦,董宽虎,李钰莹,李晨,杨静芳. 外源植物激素对NaCl胁迫下苦马豆苗期脯氨酸代谢的影响[J]. 草业学报, 2014, 23(2): 189-195. |
[14] | 张金政,张起源,孙国峰,何卿,李晓东,刘洪章. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1): 167-176. |
[15] | 赵哈林,曲浩,周瑞莲,云建英,李瑾,王进. 沙埋对两种灌木生长影响及其生理响应差异[J]. 草业学报, 2014, 23(1): 185-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||