Reference:[1]Zhao H L, Desert Ecology[M]. Bingjing: Science Press, 2013.[2]Benvenuti S, Macchia M, Miele S. Light, temperature and burial depth effects on Rumex obtussifolius seed germination and emergence[J]. Weed Research, 2001, 41: 177-186.[3]Danin A. Plants of Desert Dunes[M]. New York: Springer Verlag, 1996.[4] Wang J, Zhou R L, Zhao H L, et al. Growth and physiological adaptation of Messerschmidia sibirica to sand burial on coastal sandy[J]. Acta Ecologica Sinica, 2012, 32( 14): 4291-4299.[5]Li Q Y, Zhao W Z. Seedling emergence and growth responses of five desert species to sand burial depth[J]. Acta Ecologica Sinica, 2006, 26(6): 1802-1809.[6]Li W T, Zhang C, Wang F, et al. Effects of sand burial and water supply on seedlings growth of two dominant psammophytes in Mu Us sandland[J]. Acta Ecologica Sinica, 2010, 30(5): 1192-1199.[7]Yang H L, Cao Z P, Dong M, et al. Effects of sand burying on caryopsis germination and seedling growth of Bromus inermis Leyss[J]. Chinese Journal of Applied Ecology, Nov. 2007, 18(11): 2438-2443.[8]He Y H, Zhao H L, Zhao X Y, et al. Effects of dieffrent sand burial depths on growth and biomass allocation in Caragana microphylla seedlings[J]. Arid Land Geography, 2008, 31(5): 701-706.[9]Mi Z Y, Zhou D D, Wu Y D. Influence of wind erosion and sand bury on the morphological charactristics of Salix psammophila C.Wang et Ch.Y.Yang[J]. Inner Mongolia Forestry Science & Technology, 2005,(1): 9-13.[10]Xu B, Liu X E , Sun Z Y, et al. Study on the anaotmical properties and variation of sand covered poplar grown in the beaches of Yangtze River[J]. Forest Research. 2005, 18(6): 738-742.[11]Zhao H L, Zhao X Y, Zhang T H, et al. Adaptation strategies and vegetation recovery mechanism in the desertification process[M]. Beijing: Science Press, 2004.[12]Zhang Z L, Qu W J. Plant Physiology Laboratory Manual[M]. Bingjing: Higher Education Press, 2003.[13]Wang W J, He D H, Tang X Q, et al. Effects of different temperature and sand burial depths on seed germination and seedling growth of Sophora Moorcroftiana[J]. Journal of Desert Research. 2011, 31(6): 1437-1442. [14]Liu S E, Feng Z W, Zhao D C. Several issues of principle concerning China vegetation zoning[J]. Acta Botanica Sinica, 1959, 8(2): 87-105.[15]Zhang Y F, Yin B. Influences of salt and alkali mixed stresses on antioxidative activity and MDA content of Medicago sativa at seedling stage[J]. Acta Prataculturae Sinica, 2009, 18(1): 46-50.[16]Song J Z, Li P P, Fu W G. Effect of water stress and rewatering on the physiological and biochemical characteristics of Phalaris arundinacea[J]. Acta Prataculturae Sinica, 2012, 21(2): 63-69. [17]Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation of Lespedeza davurica to drought stress and re-watering[J]. Acta Prataculturae Sinica, 2012, 21(2): 51-56.[18]Bai L P, Sui F G, Ge T D, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16: 326-332.[19]Fan R P, Zhou Q, Zhou B, et al. Effects of salinization stress on growth and the antioxidant system of tall fescue[J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117.[20]Lu Y, Li X R, He M Z, et al. Effects of Ni and Cu on antioxidative enzymes in Peganum harmala[J]. Acta Prataculturae Sinica, 2012, 21(3): 147-155.[21]Jouili H, Ferjani E. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess[J]. Computational Rend Biology, 2003, 326: 639-644.[22]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sciences, 2002, 9: 405-410.[23]Qayyum A, Razzaq A, Ahmad M, et al. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat(Triticum aestivum L.) genotypes[J]. Africa Journal Biotechnology, 2011, 10: 14038-14045.[24]Sundar D, Perianayaguy B R, Ramachandra R A. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J].Plant Growth Regulation, 2004, 44(2): 157-163.[25]Pagter M, Bragato C, Brix H. Tolerance and physiological responses of Phragmites australis to water deficit[J]. Aquatic Botany, 2005, 81: 285-299.参考文献:[1]赵哈林. 沙漠生态学[M]. 北京: 科学出版社, 2013.[2]Benvenuti S, Macchia M, Miele S. Light, temperature and burial depth effects on Rumex obtussifolius seed germination and emergence[J]. Weed Research, 2001, 41: 177-186.[3]Danin A. Plants of Desert Dunes[M]. New York: Springer-Verlag, 1996.[4]王进, 周瑞莲, 赵哈林, 等. 海滨沙地砂引草对沙埋的生长和生理适应对策[J]. 生态学报, 2012, 32(14): 4291-4299.[5]李秋艳, 赵文智. 五种荒漠植物幼苗出土及生长对沙埋深度的响应[J]. 生态学报, 2006, 26(6): 1802-1809.[6]李文婷, 张超, 王飞, 等. 沙埋与供水对毛乌素沙地两种重要沙生植物幼苗生长的影响[J].生态学报, 2010, 30(5): 1192-1199.[7]杨慧玲, 曹志平, 董鸣, 等. 沙埋对无芒雀麦种子萌发和幼苗生长的影响[J]. 应用生态学报, 2007, 18(11): 2438-2443.[8]何玉惠, 赵哈林, 赵学勇, 等. 沙埋对小叶锦鸡儿幼苗生长和生物量分配的影响[J]. 干旱区地理, 2008, 31(5): 701-706.[9]米志英, 周丹丹, 吴亚东. 风蚀沙埋对沙柳形态特征的影响[J]. 内蒙古林业科技, 2005, (1): 9-13.[10]徐斌, 刘杏娥, 孙主义, 等. 长江滩地沙埋杨树木材解剖性质及其变异的研究[J]. 林业科学研究, 2005, 18(6): 738-742.[11]赵哈林, 赵学勇, 张铜会, 等. 沙漠化过程中植物的适应对策和植被恢复机理[M]. 北京: 科学出版社, 2004.[12]张志良, 瞿伟菁.植物生理实验指南[M]. 北京: 高等教育出版社, 2003.[13]王文娟, 贺达汉, 唐小琴, 等. 不同温度和沙埋深度对砂生槐种子萌发及幼苗生长的影响[J]. 中国沙漠, 2011, 31(6): 1437-1442.[14]刘慎谔, 冯宗炜, 赵大昌.关于中国植被区划的若干原则问题[J]. 植物学报, 1959, 8(2): 87-105.[15]张永峰,殷波.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报, 2009, 18(1): 46-50.[16]宋家壮, 李萍萍, 付为国. 水分胁迫及复水对虉草生理生化特性的影响[J]. 草业学报, 2012, 21(2): 62-69.[17]杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J]. 草业学报, 2012, 21(2): 51-56.[18]Bai L P, Sui F G, Ge T D,et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16: 326-332.[19]樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响[J]. 草业学报, 2012, 21(1): 112-117.[20]鲁艳, 李新荣, 何明珠, 等. Ni和Cu胁迫对骆驼蓬抗氧化酶活性的影响[J]. 草业学报, 2012, 21(3): 147-155.[21]Jouili H, Ferjani E. Changes in antioxidant and lignifying enzyme activities in sunflower roots(Helianthus annuus L.) stressed with copper excess[J]. Computational Rend Biology, 2003, 326: 639-644.[22]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sciences, 2002, 9: 405-410.[23]Qayyum A, Razzaq A, Ahmad M,et al. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat(Triticum aestivum L.) genotypes[J]. Africa Journal Biotechnology, 2011, 10: 14038-14045.[24]Sundar D, Perianayaguy B R, Ramachandra R A. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J].Plant Growth Regulation, 2004, 44(2): 157-163.[25]Pagter M, Bragato C, Brix H. Tolerance and physiological responses of Phragmites australis to water deficit[J]. Aquatic Botany, 2005, 81: 285-299. |