[1] Rengasamy B, Pauline M. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology, 2003, 101: 131-146. [2] Shariful I, Takeshi S, Masaaki K. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum : Phytotoxicity, uptake kinetics, and mechanism. Ecotoxicology and Environmental Safety, 2015, 112: 193-200. [3] Wu Q L, Wang W C, He S Y. Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism. Chinese Journal of Applied Ecology, 2014, 25(10): 2999-3005. [4] Hou L L, Huang R, Zhou L R, et al . The accumulation of Cd in Huttuynia cordata and its promotion by rhizospheric microbes. Ecology and Environmental Sciences, 2010, 19(4): 817-821. [5] Alvarenga P, Gonalves A P, Fernandes R M. Evaluation of composts and liming materials the phytostabilization of a mine sio using perennial ryegrass. Science of the Total Environment, 2008, 406: 43-56. [6] Xu W H, Wang H X, Wang Z Y, et al . Effects of zinc, cadmium and their combined pollution on nutrient uptake and Zn, Cd, accumulation in ryegrass ( Lolium perenne L.). Asian Journal of Eeotoxieology, 2006, 11(1): 70-74. [7] Xu P X, Fei L, Chen X B, et al . Cadmium tolerance and accumulation in four cool-season turfgrass. Acta Prataculturae Sinica, 2014, 23(6): 176-188. [8] Sun R L, Jin C X, Zhou Q X. Characteristics of cadmium accumulation and tolerance in Rorippa species with some characteristics of cadmium hyperaccumulation. Plant Growth Regulation, 2010, 67: 67-74. [9] Li H F, Yuan Q H, Zhao G Q. Effects of cadmium stress on seeding growth of perennial ryegrass germplasm. Pratacultural Science, 2014, 31(5): 898-904. [10] Wang C, Wang H Y, Zhao K, et al . Effects of silicon on physiological and biochemical properties of ryegrass under the compound pollution of Cd, Zn and Pb. Ecology and Environment, 2008, 17(6): 2240-2245. [11] Chen W, Zhang M M, Song Y Y, et al . Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species. Acta Prataculturae Sinica, 2014, 23(3): 333-342. [12] Xu B M. The Seedling Evaluation and Vigour Test[M]. Beijing: China Agricultural University Press, 2001: 53-68. [13] Chen W, Zhang M M, Song Y Y, et al . Inhibitory effect of heavy metal stress on the seed germination of four turfgrass types. Acta Prataculturae Sinica, 2013, 21(3): 556-563. [14] Zhang F, Wan X Q, Zhai J. Effects of nitrogen supplement on chlorophyll synthesis and chloroplast ultrastructure of poplar plants under cadmium stress. Journal of Nuclear Agricultural Sciences, 2014, 28(3): 485-491. [15] Zhang X H, Lang D Y, Zhang E H, et al . Diurnal changes in photosynthesis and antioxidants of Angelica sinensis as influenced by cropping systems. Photosynthetica, 2013, 51(2): 252-258. [16] Chinese Ministry of Health. GB 5009.12-2010. Determination of Pb in Foods[S]. Beijing: China Standard Press, 2010. [17] Chinese Ministry of Health. GB/T 5009.15-2003. Determination of Cd in Foods[S]. Beijing: China Standard Press, 2003. [18] Jian F M, Naoki Y J, Namki M, et al . Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of the Sciences of the United States of America, 2008, 105: 9931-9935. [19] Saraswat S, Rai J P. Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chemistry and Ecology, 2009, 25(1): 1-11. [20] Liu M M, Li J N, Shen Y X. Effects of Pb 2+ pollution on the seed germination and seedling growth of Italian ryegrass. Pratacultural Science, 2007, 24(1): 52-56. [21] Wang J W, Bian C M, Chen Z. Effect of plumbum and cadmium stress on germination, growth and physiological of rice seedling. Jiangsu Agricultural Sciences, 2009, 4: 77-79. [22] Wang L Y, Zheng S Y. Effect of cadmium, lead and their combined pollution on seed germination of wheat. Journal of Triticeae Crops, 2009, 29(1): 146-148. [23] Ge C J, Chen Q B, Yu H M, et al . Effect of Cd on germination and inhibition of root elongation of tropical forage plants. Chinese Journal of Tropical Crops, 2008, 29(5): 567-571. [24] Wu Y, Mu L Q. Effect of soil Pb, Cd stress on the growth, physiological and accumulation characteristics of four ornamental trees. Journal of Soil and Water Conservation, 2013, 27(5): 234-240. [25] Xia H X, Zhu Q H, He C. Response of chlorophyll fluorescence characteristics of Lolium perenne to Pb stress. Guizhou Agriculture Science, 2012, 40(12): 33-35. [26] Zhou C B, Hu T X, Xu X G, et al . Effect of lead stress on chlorophyll content and photosynthetic characters in leaf of melilotus suavena. Journal of Sichuan Agricultural University, 2005, 23(4): 432-435. [27] Drziewicz M, Baszynski T. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protect on mechanisms. Journal of Plant Physiology, 2005, 162: 1013-1021. [28] Matos M, Rammalho J. Photosynthetic activity and cessular integrity of the Andean legume Pachyrhizus ahipa parody under heat and water stress. Photosynthetica, 2002, 40: 493-501. [29] Liao M, Huang C Y. Effects of organic acids on the toxicity of cadmium during ryegrass growth. Chinese Journal of Applied Ecology, 2002, 13(1): 109-112. [30] Yang M Y, Liang Y Y, Zen D B, et al . Effect of lead stress on accumulation capacity and physiological metabolism of ryegrass. Journal of Northwest Agriculture and Forestry University, 2014, 42(12): 97-102. [31] Zhang R, Tian Z G, Cao C L, et al . Characteristics of cadmium tolerance, accumulation and cellular distribution in Lolium perenne seedlings. Journal of Agro-Environment Science, 2010, 29(11): 2080-2086. [32] Zhang X, Lin A J, Zhao F J, et al . Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides . Environmental Pollution, 2008, 156: 1149-1155. [33] Li S K, Zhang C L, Li K Q, et al . Repairation of Lolium perenne on yellow soil heavy metal pollution. Guizhou Agricultural Sciences, 2014, 42(11): 147-151. [34] Yang Z, Wang W, Li B W, et al . Study on characteristics of Lolium multiflorum and Festuca arundinacea absorbing and accumulating cadmium, lead and zinc from contaminated soil with these metals. Journal of Soil and Water Conservation, 2008, 22(2): 83-88. [3] 吴秋玲, 王文初, 何闪英. GA3与EDTA 强化黑麦草修复Pb 污染土壤及其解毒机制. 应用生态学报, 2014, 25(10): 2999-3005. [4] 侯伶龙, 黄荣, 周丽蓉, 等. 鱼腥草对土壤中镉的富集及根系微生物的促进作用. 生态环境学报, 2010, 19(4): 817-821. [6] 徐卫红, 王宏信, 王正银, 等. 锌、镉复合污染对重金属蓄集植物黑麦草养分吸收及锌、镉积累的影响. 生态毒理学报, 2006, 11(1): 70-74. [7] 徐佩贤, 费凌, 陈旭兵, 等. 四种冷季型草坪植物对镉的耐受性与积累特性. 草业学报, 2014, 23(6): 176-188. [9] 李慧芳, 袁庆华, 赵桂琴. 镉胁迫对多年生黑麦草种质幼苗生长的影响. 草业科学, 2014, 31(5): 898-904. [10] 王晨, 王海燕, 赵琨, 等. 硅对镉、锌、铅复合污染土壤中黑麦草生理生化性质的影响. 生态环境, 2008, 17(6): 2240-2245. [11] 陈伟, 张苗苗, 宋阳阳, 等. 重金属离子对2种草坪草荧光特性及根系形态的影响. 草业学报, 2014, 23(3): 333-342. [12] 徐本美. 种苗评定与种子活力测定方法手册(国际种子检验协会)[M]. 北京:中国农业大学出版社, 2001: 53-68. [13] 陈伟, 张苗苗, 宋阳阳, 等. 重金属胁迫对4种草坪草种子萌发的影响. 草业学报, 2013, 21(3): 556-563. [14] 张帆, 万雪琴, 翟晶. 镉处理下增施氮对杨树叶绿素合成和叶绿体超微结构的影响. 核农学报, 2014, 28(3): 485-491. [16] 中华人民共和国卫生部. GB 5009.12-2010. 食品中铅的测定[S]. 北京:中国标准出版社, 2010. [17] 中华人民共和国卫生部. GB/T 5009.15-2003. 食品中镉的测定[S].北京:中国标准出版社, 2003. [20] 刘明美, 李建农, 沈益新. Pb 2+ 污染对多花黑麦草种子萌发及幼苗生长的影响. 草业科学, 2007, 24(1): 52-56. [21] 王锦文, 边才苗, 陈珍. 铅、镉胁迫对水稻种子萌发、幼苗生长及生理指标的影响. 江苏农业科学, 2009, 4: 77-79. [22] 王丽燕, 郑世英. 镉、铅及其复合污染对小麦种子萌发的影响. 麦类作物学报, 2009, 29(1): 146-148. [23] 葛成军, 陈秋波, 俞花美, 等. Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应. 热带作物学报, 2008,29(5): 567-571. [24] 温瑀, 穆立蔷. 土壤铅、镉胁迫对4种绿化植物生长、生理及积累特性的影响. 水土保持学报, 2013, 27(5): 234-240. [25] 夏红霞, 朱启红, 何超. 黑麦草叶绿素荧光特性对Pb离子胁迫的响应. 贵州农业科学, 2012, 40(12): 33-35. [26] 周朝彬, 胡庭兴, 胥晓刚, 等. 铅胁迫对草木樨中叶绿素含量和几种光合特性的影响. 四川农业大学学报, 2005, 23(4): 432-435. [29] 廖敏, 黄昌勇. 黑麦草生长过程中有机酸对镉毒性的影响. 应用生态学报, 2002, 13(1): 109-112. [30] 杨明琰, 梁语燕, 曾德榜, 等. 铅胁迫对黑麦草Pb富集特性及生理代谢的影响. 西北农林科技大学学报(自然科学版), 2014, 42(12): 97-102. [31] 张尧, 田正贵, 曹翠玲, 等. 黑麦草幼苗对镉耐性能力及吸收积累和细胞分布特点研究. 农业环境科学学报, 2010, 29(11): 2080-2086. [33] 李松克, 张春林, 李克勤, 等. 多年生黑麦草对黄壤重金属污染的修复. 贵州农业科学, 2014, 42(11): 147-151. [34] 杨卓, 王伟, 李博文, 等. 高羊茅和黑麦草对污染土壤Cd, Pb, Zn 的富集特征. 水土保持学报, 2008, 22(2): 83-88. |