[1] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. [2] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310. [3] Bremer E, Janzen H H, Johnston A M. Sensitivity of total, light fraction and mineralizable organic matter to management practices in a lethbridge soil. Canadian Journal of Soil Science, 1994, 74(2): 131-138. [4] Garcia C, Hernandez T. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 1997, 35: 265-278. [5] Wu Y P, Ma B, Zhou L, et al . Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology, 2009, 43(2/3): 234-240. [6] Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 2012, 44(1): 9-20. [7] Luo Y Y, Meng Q T, Zhang J H, et al . Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. 罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. [8] Wang M, Li Y, Bai X Z, et al . The impact of global warming on vegetation resources in the hinterland of the Qinghai-Tibet Plateau. Journal of Natural Resources, 2004, 19(3): 331-336. 王谋, 李勇, 白宪洲, 等. 全球变暖对青藏高原腹地草地资源的影响. 自然资源学报, 2004, 19(3): 331-336. [9] Cui Q H, Jiang Z G, Liu J K, et al . A review of the cause of rangeland degradation on Qinghai-Tibet plateau. Pratacultural Science, 2007, 24(5): 20-26. 崔庆虎, 蒋志刚, 刘季科, 等. 青藏高原草地退化原因述评. 草业科学, 2007, 24(5): 20-26. [10] Wang J B, Zhang D G, Cao G M, et al . Regional characteristics of the alpine degradation succession on the Qinghai-Tibetan plateau. Acta Prataculturae Sinica, 2013, 22(2): 1-10. 王建兵, 张德罡, 曹广民, 等. 青藏高原高寒草甸退化演替的分区特征. 草业学报, 2013, 22(2): 1-10. [11] Li X L, Gao J, Brierley G, et al . Rangeland degradation on the Qinghai-Tibet plateau: implications for rehabilitation. Land Degradation & Development, 2013, 24(1): 72-80. [12] Qin Y, Chen J J, Yi S H. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 2015, 84: 287-291. [13] Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. [14] Wang B S, Ga M J, Zhang Y. Study on the forming mechanism of “black beach” degraded alpine meadow on Qinghai-Tibetan plateau and the research progress on its restoration. Grassland and Turf, 2007, (2): 72-77. 王宝山, 尕玛加, 张玉. 青藏高原“黑土滩”退化高寒草甸草原的形成机制和治理方法的研究进展. 草原与草坪, 2007, (2): 72-77. [15] Lan Y R. Introduction trial on australianoat swan in Guinan, Qinghai. Qinghai Prataculture, 2004, 13(1): 27-30. 兰玉蓉. 青藏高原高寒草甸草地退化现状及治理对策. 青海草业, 2004, 13(1): 27-30. [16] Zhao G F, Yu C Q, Wu J X, et al . Research progress on restoration and management of degraded alpine meadow in Qinghai-Tibet plateau. Guizhou Agricultural Sciences, 2013, 41(5): 125-129. 赵贯锋, 余成群, 武俊喜, 等. 青藏高原退化高寒草地的恢复与治理研究进展. 贵州农业科学, 2013, 41(5): 125-129. [17] Jiao J C, Yang W Q, Zhong X, et al . Factors of retrogradation in Ruoergai Wetland and its conservation strategies. Journal of Sichuan Forestry Science and Technology, 2007, 28(1): 98-103. 焦晋川, 杨万勤, 钟信, 等. 若尔盖湿地退化原因及保护对策. 四川林业科技, 2007, 28(1): 98-103. [18] Dong Q M, Zhao X Q, Wu G L, et al . A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2013, 70(5): 2359-2370. [19] Wang D, Liu Y, Wu G L, et al . Effect of rest-grazing management on soil water and carbon storage in an arid grassland (China). Journal of Hydrology, 2015, 527: 754-760. [20] Munoz M A, Faz A, Acosta J A, et al . Effect of south American grazing camelids on soil fertility and vegetation at the Bolivian Andean grasslands. Agriculture, Ecosystems & Environment, 2015, 207: 203-210. [21] Zhao N, Zhang H X, Wang R M, et al . Effect of grazing intensity on temperature sensitivity of soil nitrogen mineralization in Zoige alpine meadow. Acta Ecologica Sinica, 2014, 34(15): 4234-4241. 赵宁, 张洪轩, 王若梦, 等. 放牧对若尔盖高寒草甸土壤氮矿化及其温度敏感性的影响. 生态学报, 2014, 34(15): 4234-4241. [22] Wu P F, Zhang H Z, Cui L W, et al . Response of soil macrofauna communities to degradation of alpine meadow. Acta Pedologica Sinica, 2013, 50(4): 786-799. 吴鹏飞, 张洪芝, 崔丽巍, 等. 大型土壤动物群落对高寒草甸退化的响应. 土壤学报, 2013, 50(4): 786-799. [23] Lao J C. Handbook of Soil Chemical Analysis. Beijing: Agriculture Press, 1988. 劳家柽. 土壤农化分析手册. 北京: 农业出版社, 1988. [24] Xu J W, Yu G R, Zhang H Z, et al . The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Soil Ecology, 2014, 86: 19-29. [25] Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22(1/2): 59-65. [26] Djukic I, Zehetner F, Mentler A, et al . Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 2010, 42(2): 155-161. [27] Alatalo R V. Problems in the measurement of evenness in ecology. Oikos, 1981, 37(2): 199-204. [28] Shannon C E. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(3): 379-423. [29] Zak J C, Willig M R, Moorhead D L, et al . Functional diversity of microbial communities-A quantitative approach. Soil Biology & Biochemistry, 1994, 26(9): 1101-1108. [30] Jia S H, Wang C Z, Sun Z T, et al . Study on grassland dark sandy chestnut compaction by grazing intensity and grazing season. Acta Agrestia Sinica, 1999, 7(3): 217-221. 贾树海, 王春枝, 孙振涛, 等. 放牧强度和时期对内蒙古草原土壤压实效应的研究. 草地学报, 1999, 7(3): 217-221. [31] Zeng F P, Peng W X, Song T Q, et al . Changes in vegetation after 22 years’ natural restoration in the karst disturbed area in northwest Guangxi. Acta Ecologica Sinica, 2007, 27(12): 5110-5119. 曾馥平, 彭晚霞, 宋同清, 等. 桂西北喀斯特人为干扰区植被自然恢复22年后群落特征. 生态学报, 2007, 27(12): 5110-5119. [32] Milchunas D G, Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 1993, 63(4): 327-366. [33] Yao Z Y, Zhao C Y, Yang K S, et al . Alpine grassland degradation in the Qilian mountains, China-A case study in Damaying grassland. Catena, 2016, 137: 494-500. [34] Tan H Y, Yan R R, Yan Y Q, et al . Phospholipid fatty acid analysis of soil microbial communities under different grazing intensities in meadow steppe. Acta Prataculturae Sinica, 2015, 24(3): 115-121. 谭红妍, 闫瑞瑞, 闫玉春, 等. 不同放牧强度下温性草甸草原土壤微生物群落结构PLFAs分析. 草业学报, 2015, 24(3): 115-121. [35] Hu Y L, Wang S L, Yan S K. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37(1): 170-176. 胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37(1): 170-176. [36] Hu N, Li H, Tang Z, et al . Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. European Journal of Soil Biology, 2016, 73: 77-83. [37] Shi H X, Yu J L. Quantity of microbes in the different vegetation types on the Qinghai-Tibetan plateau. Chinese Journal of Soil Science, 2012, 43(1): 47-51. 石红霄, 于健龙. 青藏高原不同植被类型土壤微生物数量及影响因子. 土壤通报, 2012, 43(1): 47-51. [38] Jiao X G, Gao C S, Sui Y Y, et al . Research on soil microbial ecology under different soil organic matter levels in farmland. Scientia Agricultura Sinica, 2011, 44(18): 3759-3767. 焦晓光, 高崇升, 隋跃宇, 等. 不同有机质含量农田土壤微生物生态特征. 中国农业科学, 2011, 44(18): 3759-3767. |