[1] Bolton M D, Thomma B H, Nelson B D.Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7(1): 1-16. [2] Lu G.Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African Journal of Biotechnology, 2003, 2(12): 509-516. [3] Li H, Wen L, Liu K, et al. Research progress on resistance mechanism of Brassica napus to Sclerotinia sclerotiorum. Crop Research, 2015, 29(1): 84-90. 李慧, 文李, 刘凯, 等. 油菜抗菌核病机制研究进展. 作物研究, 2015, 29(1): 84-90. [4] Liu Z L, Liu C L.Progress on resistance to the sclerotinia stem rot of Brassica napus. Chinese Agricultural Science Bulletin, 2015, 31(15): 114-123. 刘正立, 刘春林. 甘蓝型油菜抗菌核病研究进展. 中国农学通报, 2015, 31(15): 114-123. [5] Mei J, Qian L, Disi J O, et al. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2011, 177(3): 393-399. [6] Wang Y, Hou Y P, Chen C J, et al. Detection of resistance in Sclerotinia sclerotiorum, to carbendazim and dimethachlon in Jiangsu Province of China. Australasian Plant Pathology, 2014, 43(3): 307-312. [7] Qin H Q, Chen F Y, Fu D C, et al. Sensitivity of Sclerotinia sclerotiorium to 10 fungicides and controlling effect of different medicaments to the rape Sclerotinia stem rot in field. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2011, 39(7): 117-122. 秦虎强, 陈芳颖, 付鼎程, 等. 油菜菌核病菌对10种杀菌剂的敏感性及不同药剂田间防效. 西北农林科技大学学报(自然科学版), 2011, 39(7): 117-122. [8] Heydari A, Misachi I J.The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant and Soil, 2003, 257(2): 391-396. [9] Samuel M C, Zahangir K, Frank N M, et al. Comparison of crop rotation for Verticillium wilt management and effect on Pythium species in conventional and organic strawberry production. Plant Disease, 2009, 93(5): 519-527. [10] Mancini V, Romanazzi G.Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Management Science, 2014, 70(6): 860-868. [11] Kamalam A, Hashem M, Alie H.Integrated control of cotton root disease by mixing fungal biocontrol agents and resistance inducers. Crop Protection, 2009, 28(4): 295-301. [12] Hu X J, Roberts D P, Xie L H, et al. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biological Control, 2014, 70(1): 54-64. [13] Onaran A, Yanar Y.Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (Lib.) de Bary causal agent of cucumber white mold disease. African Journal of Biotechnology, 2011, 10(12): 2223-2229. [14] Han L R, Zhang H J, Gao B W, et al. Antifungal activity against rapeseed Sclerotinia stem rot and identification of actinomycete strain 11-3-1. Journal of Plant Protection, 2012, 39(2): 97-102. 韩立荣, 张华姣, 高保卫, 等. 放线菌11-3-1对油菜菌核病的防治作用与菌株鉴定. 植物保护学报, 2012, 39(2): 97-102. [15] Kausar N.Biocontrol potential of Trichoderma spp. against rapeseed-mustard isolate of Sclerotinia sclerotiorum. Journal of Plant Protection and Environment, 2014, 11(2): 98-101. [16] Yang R, Han Y C, Yang L, et al. Characterization of antifungal substances produced by Coniothyrium minitans stain Chy-1. Chinese Journal of Biological Control, 2014, 30(4): 520-527. 杨蕊, 韩永超, 杨龙, 等. 盾壳霉菌株Chy-1抗真菌物质的基本特性研究. 中国生物防治学报, 2014, 30(4): 520-527. [17] Xia L S, Lin H F.Antagonism of Beauveria bassiana against several common pathogens. Chinese Journal of Biological Control, 2013, 29(2): 324-330. 夏龙荪, 林华峰. 白僵菌对几种常见植物病原菌的拮抗作用研究. 中国生物防治学报, 2013, 29(2): 324-330. [18] Mier N, Canete S, Klaebe A, et al. Insecticidal properties of mushroom and toadstool carpophores. Phytochemistry, 1996, 41(5): 1293-1299. [19] Stadler M, Sterner O.Production of bioactive secondary metabolites in the fruit bodies of macro fungi as a response to injury. Phytochemistry, 1998, 49(4): 1013-1019. [20] Dománski S.Bjerkandera adusta on young Quercus rubra and Quercus robur injured by late spring frosts in the upper Silesia industrial district of Poland. European Journal of Forest Pathology, 1982, 12(6): 406-413. [21] Bak W C, Lee B H, Park Y A, et al. Characteristics of bed-log of shiitake damaged by Bjerkandera adusta and antagonism between these two fungi. The Korean Journal of Mycology, 2011, 39(1): 44-47. [22] Wang H, Yu D Z, Guo J.Identification of Bjerkandera adusta 15 strain and study of antimicrobial activity//Proceedings of Academic Annual Conference of the China Society for the Protection of Plants in 2015. Changchun: Academic Annual Conference of the China Society for the Protection of Plants, 2015: 590. 汪华, 喻大昭, 郭坚. 一株多孔烟管菌菌株高氏15号的鉴定及抑菌活性研究//病虫害绿色防控与农产品质量安全-中国植物保护学会2015年学术年会论文集. 长春: 中国植物保护学会2015年学术年会, 2015: 590. [23] Zhang X H, Zhang H N, Li Y, et al. Screening and identification of biocontrol fungi against Didymella bryoniae and optimization of fermentation conditions. China Biotechnology, 2017, 37(5): 76-86. 张旭辉, 张红楠, 李勇, 等. 抑制西瓜蔓枯病菌的生防真菌筛选、鉴定及发酵条件优化. 中国生物工程杂志, 2017, 37(5): 76-86. [24] Xiang Y P, Chen Z Y, Luo C P, et al. The antifungal activities of Bacillus spp. and its relationship with lipopeptide antibiotics produced by Bacillus spp. Scientia Agricultura Sinica, 2015, 48(20): 4064-4076. 向亚萍, 陈志谊, 罗楚平, 等. 芽孢杆菌的抑菌活性与其产脂肽类抗生素的相关性. 中国农业科学, 2015, 48(20): 4064-4076. [25] Campanile G, Ruscellia, Luisi N.Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 2007, 11(7): 237-246. [26] Shao X, Cheng S, Wang H, et al. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. Journal of Applied Microbiology, 2013, 114(6): 1642-1649. [27] He Z, Wang J, Oh J, et al. Robust optimization for multiple responses using response surface methodology. Applied Stochastic Models in Business and Industry, 2010, 26(2): 157-171. [28] Wang X Y.Screening of Verticillium dahliae pathogenicity-related mutants and functional analysis of the pathogenic gene VdCYP1. Beijing: Chinese Academy of Agricultural Sciences, 2015. 王新艳. 大丽轮枝菌致病相关突变体的筛选及致病基因VdCYP1功能初步研究. 北京: 中国农业科学院, 2015. [29] Smith V L, Wilcox W F, Harman G E.Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathology, 1990, 80(9): 880-885. [30] Rosa D R, Herrera C J.Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 2009, 51(1): 66-71. [31] Chen Z M, Gu G, Chen S H, et al. Antagonism of Trichoderma spp. to Phytophthora parasitica var. nicotianae. Journal of Fujian Agricultural and Forestry University (Natural Science Edition), 2009, 38(3): 234-237. 陈志敏, 顾钢, 陈顺辉, 等. 木霉菌对烟草疫霉的拮抗作用. 福建农林大学学报(自然科学版), 2009, 38(3): 234-237. [32] Eziashi E I, Uma N U, Adekunile A A, et al. Biological control of Ceratocystis paradoxa causing black seed rot in oil palm sprouted seeds by Trichoderma species. Pakistan Journal of Biological Science, 2006, 9(10): 1987-1990. [33] Ohberg H, Bang U.Biological control of clover rot on red clover by Coniothrium minitans under natural and controlled climatic conditions. Biocontrol Science and Technology, 2010, 20(1): 25-36. [34] Vrije T D, Antoine N, Buitelaar R M, et al. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Applied Microbiology and Biotechnology, 2001, 56(1): 58-68. [35] Huang H C, Kokko E G.Penetration of hyphae of Sclerotinia sclerotiorum by Coniothyrium minitans without the formation of appressoria. Journal of Phytopathology, 1988, 123(2): 133-136. [36] Kredics L, Antal Z, Manczinger L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 2003, 41(7/8): 37-42. [37] Tomprefa N, Mcquiken M P, Hill R, et al. Antimicrobial activity of Coniothyrium minitans and its macrolide antibiotic macrosphelide A. Journal of Applied Microbiology, 2009, 106(6): 2048-2056. [38] Xie X L, Yang L, Wu M D, et al. Culture condition and characterization of factors affecting activity of the extracellular proteases produced by mycoparasite Coniothyrium minitans. Chinese Journal of Biological Control, 2016, 32(3): 406-413. 谢晓莉, 杨龙, 吴明德, 等. 重寄生真菌盾壳霉胞外蛋白酶产生条件及酶活影响因子. 中国生物防治学报, 2016, 32(3): 406-413. [39] Guo Z H, Huang J, Wei X W, et al. Isolation and identification of a broad spectrum antagonistic bacteria and its antibiotic component analysis. Journal of Hunan Agricultural University (Natural Sciences), 2014, 40(5): 513-518. 郭照辉, 黄军, 魏小武, 等. 1株广谱拮抗菌的分离鉴定及其抗菌活性成分分析. 湖南农业大学学报(自然科学版), 2014, 40(5): 513-518. [40] Tijerino A, Cardoza R E, Moraga J, et al. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 2011, 48(3): 285-296. [41] Lan X J.Study on disease prevention and growth promotion effects of two biocontrol agents in the field and their mechanism by laboratory test. Shaanxi: Northwest Agriculture and Forestry University, 2015. 蓝星杰. 两种生防菌田间防病促生作用及其机理研究. 陕西: 西北农林科技大学, 2015. |