[1] Wang J Y, Zhu C G, Xu C F.Biochemistry. Beijing: Higher Education Press, 2002: 63-90. 王镜岩, 朱长庚, 徐长发.生物化学. 北京:高等教育出版社, 2002: 63-90. [2] Gao Z K, Gao R F, He J P, et al. Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplant. Journal of Ecology, 2007, 27(6): 2265-2271. 高志奎, 高荣孚, 何俊萍, 等. 温室茄子(Solanum melongena L)光和数学模型与光合生化模型模拟分析. 生态学报, 2007, 27(6): 2265-2271. [3] Brüggemann W, Klaucke S, Mass-Kantel K.Long-term chilling of young tomato plants under low-light V.Kinetic and molecular properties of two key enzymes of the Calvin cycle in Lycopersicon esculentum Mill and L. peruvianum Mill. Planta, 1994, 194: 160-168. [4] Pérez-Torres E, Bascuñán L, Sierra A, et al. Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biology, 2006, 29(11): 909-916. [5] Zhuang L, Li W H, Meng L H.Exploitation research utilization and protection of medical plant resources-snow lotuses (Saussurea). Journal of Arid Land Resources and Environment, 2006, (2): 195-202. 庄丽, 李卫红, 孟丽红.新疆雪莲资源的利用、研发与保护. 干旱区资源与环境, 2006, (2): 195-202. [6] Dai P F, Tan D Y.Floral biological characteristics of Saussurea involucrata in relation to ecological adaptation. Chinese Journal of Plant Ecology, 2011, 35(1): 56-65. 戴攀峰, 谭敦炎. 雪莲的开花生物学特性及其生态适应意义. 植物生态学报, 2011, 35(1): 56-65. [7] Liu H, Zang R G, Zhang X P.Photosynthetic and ecophysiological characteristics of snow lotus (Saussuea involucrata) in its natural conditions in the central part of Tianshan Mountains. Scientia Silvae Sinicae, 2009, 45(3): 40-48. 刘华, 臧润国, 张新平. 天山中部3种自然生境下天山雪莲的光合生理生态特性.林业科学, 2009, 45(3): 40-48. [8] Liu Y G, Chen Y. High-efficience thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 2007, 43(5): 649-650, 652, 654. [9] Guo X Y, Wang A Y, Zhu J B, et al. Drought-tolerance analysis of tobacco plant transformed with Sasussured involucrata siCOR gene. Bulletin of Botany, 2012, 47(2): 111-119. 郭新勇, 王爱英, 祝建波, 等.天山雪莲冷调节蛋白基因sicor转化烟草植株的抗旱性分析. 植物学报, 2012, 47(2): 111-119. [10] Mu J Q, Liang W J, Zhu J B, et al. Cloning, subcellular localization and expression analysis of sikFBA1 from Saussurea involucrata Kar. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(11): 2137-2145. 穆建强, 梁文洁, 祝建波, 等. 天山雪莲sikFBA1基因克隆定位及表达分析. 西北植物学报, 2016, 36(11): 2137-2145. [11] Jefferson R A.Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 1987, 5(4): 387-405. [12] Stracquadanio G, Umeton R, Papini A.Analysis and optimization of C3 photosynthetic carbon metabolism. Hongkong: IEEE International Conference on Bioinformatics and Bioengineering, IEEE, 2010: 44-45. [13] Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(S1/2): 248-254. [14] Yamguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis gene is invovled in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6(2): 251-264. [15] Uematsu K, Suzuki N, Iwamae T, et al. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. Journal of Experimental Botany, 2012, 63(8): 3001. [16] Stockinger E J, Gilmour S J, Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3): 1035-1040. [17] Fowler S, Thomashow M F.Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.Plant Cell, 2002, 14(8): 1675-1690. [18] Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127: 910-917. [19] Zhen W, Chen X, Sun S Y, et al. Evaluation of cold resistance of transformed Brassica napus and tobacco of a cold-inducible transcription factor CBF1. Progress in Natural Science, 2000, 10(12): 1011-1014. 甄伟, 陈溪, 孙思洋, 等. 冷诱导基因的转录因子CBF1转化油菜及烟草及抗寒性鉴定. 自然科学进展, 2000, 10(12): 1011-1014. [20] Ma Y Y, Xiao X, Zhang W N.Research progress of plants under cold stress. Journal of Anhui Agricultural Sciences, 2012, (12): 7007-7008. 马媛媛, 肖霄, 张文娜. 植物低温逆境胁迫研究综述. 安徽农业科学, 2012, (12): 7007-7008. [21] Liu L Y, Li N, Yao C P, et al. Functional analysis of ABR family involved in ABA and stress signal transduction process in Arabidopsis. Chinese Science Bulletin, 2013, 58(27): 2751-2761. 刘凌云, 李娜, 姚春鹏, 等. 拟南芥中ABR蛋白家族在ABA和逆境胁迫信号转导过程中功能分析. 科学通报, 2013, 58(27): 2751-2761. [22] Sun X L, Li Y, Cai H, et al. Arabidopsis bZIP1 transcription factor binding to the ABRE cis-element regulates abscisic acid signal transduction. Acta Agronomica Sinica, 2011, 37(4): 612-619. 孙晓丽, 李勇, 才华, 等. 拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导. 作物学报, 2011, 37(4): 612-619. [23] Jiang Y, Hu S L, Sun X, et al. Comparative phylogenetic analysis of the bZIP gene family in Arabidopsis thaliana. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 22-27. 蒋瑶, 胡尚连, 孙霞, 等. 拟南芥bZIP基因家族系统发育树比较分析. 华北农学报, 2008, 23(1): 22-27. [24] Singh K, Foley R C, Onate-Sanchez L.Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002, 5(5): 430-436. [25] Nie L N, Xia L Q, Xu Z S, et al. Progress on cloning and functional study of plant gene promoters. Journal of Plant Genetic Resources, 2008, 9(3): 385-391. 聂丽娜, 夏兰琴, 徐兆师, 等. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 2008, 9(3): 385-391. [26] Meng H, Zhang X, Zeng R Z, et al. The effects of transcription factor ABP9 over-expression on plant growth and development. Chinese Agricultural Science Bulletin, 2007, 23(6): 94-98. 孟慧, 张霞, 曾日中, 等. 转录因子ABP9基因过表达对植物生长发育的影响分析. 中国农学通报, 2007, 23(6): 94-98. |