[1] Dlamini P, Chivenge P, Chaplot V.Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agriculture, Ecosystems : Environment, 2016, 221: 258-269. [2] Zhang Y, Dong S, Gao Q, et al. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 2016, 562: 353-363. [3] Wang L, Zeng H, Zhang Y J, et al. A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau. Chinese Journal of Ecology, 2019, 38(11): 3506-3515. 王荔, 曾辉, 张扬建, 等. 青藏高原土壤碳储量及其影响因素研究进展. 生态学杂志, 2019, 38(11): 3506-3515. [4] Shang W, Wu X D, Zhao L, et al. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau. Catena, 2016, 137: 670-678. [5] Guan S, An N, Zong N, et al. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2018, 116: 224-236. [6] Qin Y, Yi S H, Li N J, et al. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2012, 21(6): 278-288. 秦彧, 宜树华, 李乃杰, 等. 青藏高原草地生态系统碳循环研究进展. 草业学报, 2012, 21(6): 278-288. [7] Liu Z L, Yu W T.Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Eco-Agriculture, 2011, 19(2): 447-455. 刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455. [8] Sarkhot D V, Comerford N B, Jokela E, et al. Aggregation and aggregate carbon in a forested southeastern coastal plain spodosol. Soil Science Society of America Journal, 2007, 71(6): 1779-1787. [9] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241(2): 155-176. [10] Wang X H, Yang Z J, Liu X F, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of southern China. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. 王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响. 生态学报, 2016, 36(9): 2588-2596. [11] Xu X R, Wang J K.A review on different stabilized mechanisms of soil aggregates and organic carbon. Chinese Journal of Soil Science, 2017, 48(6): 1523-1529. 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529. [12] Van Auken O W. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 2009, 90(10): 2931-2942. [13] Li H, Shen H H, Chen L Y, et al. Effects of shrub encroachment on soil organic carbon in global grasslands. Scientific Reports, 2016, 6(1): 28974. [14] Gao Q Z, Guo Y Q, Xu H G, ,et al. Climate change. Climate change and its impacts on vegetation distribution and net primary productivity of the 16 alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 2016, 554/555: 34-41. [15] Wang Y X, Chen X J, Lou S N, et al. Woody-plant encroachment in grasslands: A review of mechanisms and aftereffects. Acta Prataculturae Sinica, 2018, 27(5): 219-227. 王迎新, 陈先江, 娄珊宁, 等. 草原灌丛化入侵: 过程、机制和效应. 草业学报, 2018, 27(5): 219-227. [16] Brandt J S, Haynes M A, Kuemmerle T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158(2): 116-127. [17] Erfanzadeh R, Bahrami B, Motamedi J, et al. Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland. Geoderma, 2014, 213(1): 74-78. [18] Hewins D B, Sinsabaugh R L, Archer S R, et al. Soil-litter mixing and microbial activity mediate decomposition and soil aggregate formation in a sandy shrub-invaded Chihuahuan Desert grassland. Plant Ecology, 2017, 218(4): 459-474. [19] Zhao Y P, Meng M J, Zhang J C, et al. Relationship between soil aggregate stability and different forms of Fe and Al oxides in different forest types. Bulletin of Soil and Water Conservation, 2018, 38(4): 75-81, 86. 赵友朋, 孟苗婧, 张金池, 等. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系. 水土保持通报, 2018, 38(4): 75-81, 86. [20] Zhu X G.Response of soil properties changes in typical steppe to woody plant encroachment. Beijing: Institute of Botany, the Chinese Academy of Science, 2007. 祝晓光. 典型草原土壤性状变化对灌丛化的响应. 北京: 中国科学院植物所, 2007. [21] Hu S P.Molecular speciation of heavy metals transformation in soil. Hangzhou: Zhejiang University, 2009. 胡少平. 土壤重金属迁移转化的分子形态研究. 杭州: 浙江大学, 2009. [22] Wang J L, Liu Z Y.Chemical behavior of heavy metals in rhizosphere Ⅲ. The rhizosphere effect of iron oxide transformation in soils and its ecological significance. Chinese Journal of Applied Ecology, 1992, 3(4): 339-345. 王建林, 刘芷宇. 重金属在根际中的化学行为Ⅲ.土壤中铁形态. 应用生态学报, 1992, 3(4): 339-345. [23] Guo X M, Wu H H, Luo M, et al. The morphological change of Fe/Al-oxide minerals in red soils in the process of acidification and its environmental significance. Acta Petrologica Et Mineralogica, 2007, 26(6): 515-521. 郭杏妹, 吴宏海, 罗媚, 等. 红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义. 岩石矿物学杂志, 2007, 26(6): 515-521. [24] Jia L.Effects of vegetation restoration on microaggregates and their cementing substances in degraded red soil. Nanchang: Nanchang Institute of Technology, 2018. 贾龙. 植被恢复对退化红壤微团聚体及其胶结物质的影响. 南昌: 南昌工程学院, 2018. [25] Tu S X, Sun J H, Guo Z F, et al. On relationship between root exudates and plant nutrition in rhizosphere. Soil and Environmental Sciences, 2000, 9(1): 64-67. 涂书新, 孙锦荷, 郭智芬, 等. 植物根系分泌物与根际营养关系评述. 土壤与环境, 2000, 9(1): 64-67. [26] Huang Y K.Chemical abstracts of humic acids. Beijing: Science Press, 1982. 黄永奎. 腐植酸化学文摘. 北京: 科学出版社, 1982. [27] Cambardella C A, Elliott E T.Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57(4): 1071-1076. [28] Barral M T, Bujan E, Devesa R, et al. Comparison of the structural stability of pasture and cultivated soils. The Science of the Total Environment, 2007, 378(1/2): 174-178. [29] Lu R K.The analysis method of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. [30] She Y P, Chen S Q.Forecast and analysis of algae based on boosted regression tree. Journal of Changchun University, 2015, 25(6): 20-23. 佘玉萍, 陈淑清. 基于增强回归树的水藻预测分析. 长春大学学报, 2015, 25(6): 20-23. [31] Wu Y W, Zhang J C, Guo X P, et al. Identification of efficient strain applied to mining rehabilitation and its rock corrosion mechanism: Based on boosted regression tree analysis. Environmental Science, 2017, 38(1): 283-293. 吴雁雯, 张金池, 郭晓平, 等. 应用于矿山修复的高效菌株鉴定与溶岩机制: 基于增强回归树分析. 环境科学, 2017, 38(1): 283-293. [32] Elith J, Leathwick J R, Hastie T.A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77(4): 802-813. [33] Tisdall J M, Oades J M.Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982, 33(2): 141-163. [34] Guan L Z, Zhang B Q, Yan L.Composition of microaggregate and cementing substances in black soils and brown forest soils with different fertility levels. Acta Pedologica Sinica, 1991, 28(3): 260-267. 关连珠, 张伯泉, 颜丽. 不同肥力黑土, 棕壤微团聚体组成及其胶结物质的研究. 土壤学报, 1991, 28(3): 260-267. [35] Nie W T, Hu B.The research progress of soil aggregate stability and its influence factors//Proceedings of the cross-strait symposium on soil and water conservation, Chinese society for soil and water conservation. Wuhan: Chinese Society of Soil and Water Conservation, 2014: 48-52. 聂文婷, 胡波. 土壤团聚体稳定性及其影响因素研究进展//中国水土保持学会海峡两岸水土保持学术研讨会论文集. 武汉: 中国水土保持学会, 2014: 48-52. [36] Liao J D, Boutton T W, Jastrow J D.Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biology : Biochemistry, 2006, 38(11): 3197-3210. [37] Su J, Zhao S W.Comparison of the analysis methods for soil aggregate stability. Bulletin of Soil and Water Conservation, 2009, 29(5): 114-117. 苏静, 赵世伟. 土壤团聚体稳定性评价方法比较. 水土保持通报, 2009, 29(5): 114-117. [38] Bird S B, Herrick J E, Wander M M, et al. Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environmental Pollution, 2002, 116(3): 445-455. [39] Rasmussen C, White D A, Bernard A W, et al. Vegetation effects on soil organic carbon quality in an arid hyperthermic ecosystem. Geoderma, 2010, 175(9): 438-446. [40] Chen S.Stability of soil aggregates under different land use patterns and its relationships with organic matter and iron-alumina oxides. Wuhan: Huazhong Agricultural University, 2012. 陈山. 不同利用方式土壤团聚体稳定性及其与有机质和铁铝氧化物的关系. 武汉: 华中农业大学, 2012. [41] Chen J F.Oxides in soil colloids. Chinese Journal of Soil Science, 1981, 18(2): 44-49. 陈家坊. 土壤胶体中的氧化物. 土壤通报, 1981, 18(2): 44-49. [42] Xiong Y.Soil colloid, Book one: Material basis of soil colloid. Beijing: Science Press, 1983. 熊毅. 土壤胶体, 第一册:土壤胶体中的物质基础. 北京: 科学出版社, 1983. [43] Yu X L.Study on transformation of different forms of carbon and the coupling relationships with iron in Momoge wetland soil of Songnen Plain. Wuhan: Huazhong Agricultural University, 2016. 于秀丽. 松嫩平原莫莫格湿地土壤不同形态碳转化过程及其与土壤铁耦合关系研究. 武汉: 华中农业大学, 2016. [44] Wang Z, Zhang Y L, Zou H T, et al. The effect of the freezing/thawing cycles on iron oxide forms in the soil. Chinese Journal of Soil Science, 2014, 45(1): 1-5. 王展, 张玉龙, 邹洪涛, 等. 冻融交替对土壤中不同形态氧化铁的影响. 土壤通报, 2014, 45(1): 1-5. [45] Cudennec Y, André Lecerf.The transformation of ferrihydrite into goethite or hematite, revisited. Journal of Solid State Chemistry, 2006, 179(3): 716-722. [46] Heng L S, Wang D Z, Jiang X, et al. Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils. Environmental Science, 2010, 31(11): 2748-2755. 衡利沙, 王代长, 蒋新, 等. 黄棕壤铁铝氧化物与土壤稳定性有机碳和氮的关系. 环境科学, 2010, 31(11): 2748-2755. [47] Dong C X.Study on the surface properties and adsorption and desorption of copper ions in the micro-aggragates of paddy soil (huangnitu). Nanjing: Nanjing Agricultural University, 2007. 董长勋. 水稻土(黄泥土)微团聚体表面性质及对铜离子吸附与解吸特性研究. 南京: 南京农业大学, 2007. [48] Gu Z Y, Kang L, Luo M J, et al. Factors affecting stability of soil aggregate in eastern hunan Province. Bulletin of Soil and Water Conservation, 2018, 38(5): 58-63, 69. 谷忠元, 康黎, 罗梦娟, 等. 湘东地区典型土壤团聚体稳定性的影响因素. 水土保持通报, 2018, 38(5): 58-63, 69. [49] Cheng L, Qin J H, Zhang L C, et al.Application of Le bissonnais method to study soil aggregate stability in red soils under different types of vegetation. http://kns.cnki.net/kcms/detail/32.1119.P.20190820.1619.008.html, 2019-8-20. 程谅, 秦嘉惠, 张利超, 等. 应用Le Bissonnais法研究不同植被类型下红壤团聚体稳定性. http://kns.cnki.net/kcms/detail/32.1119.P.20190820.1619.008.html, 2019-8-20. [50] Wei C F, Chen S Z.The composition of Fe and Al oxides in the organomineral complexes of purple paddy soils in Sichuan Basin. Journal of Southwest University, 1991, 13(5): 518-526. 魏朝富, 陈世正. 四川盆地紫色水稻土有机无机复合体铁铝氧化物组成的研究. 西南农业大学学报, 1991, 13(5): 518-526. [51] He Q, Chen J F, Xu Z Y.Influence of transformation of iron oxides on soil structure. Acta Pedologica Sinica, 1981, 18(4): 326-334. 何群, 陈家坊, 许祖诒. 土壤中氧化铁的转化及其对土壤结构的影响. 土壤学报, 1981, 18(4): 326-334. [52] Tan W F, Zhou S Z, Liu F, et al. Advancement in the study on interactions between iron-aluminum (hydro-) oxides and clay minerals in Soil. Soils, 2007, 39(5): 726-730. 谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展. 土壤, 2007, 39(5): 726-730. [53] Hu G C, Zhang M K.Mineralogical evidence for strong cementation of soil particles by iron oxides. Chinese Journal of Soil Science, 2002, 33(1): 25-27. 胡国成, 章明奎. 氧化铁对土粒强胶结作用的矿物学证据. 土壤通报, 2002, 33(1): 25-27. [54] Zhang Q.The interaction mechanism of aggregates characteristics and physic-chemical properties of red soils and their effect on erosion process. Wuhan: Huazhong Agricultural University, 2003. 张琪. 红壤团聚体特征与物理化学性质相互作用机理及其对侵蚀过程的影响. 武汉: 华中农业大学, 2003. [55] Li C L, Cao Z Y, Chang J J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow. Catena, 2017, 156: 139-148. [56] Barral M T, Arias M, Guérif J.Effects of iron and organic matter on the porosity and structural stability of soil aggregates. Soil and Tillage Research, 1998, 46(3/4): 261-272. [57] Igwe C A, Zarei M, Stahr K.Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena, 2009, 77(3): 232-237. [58] Duiker S W, Rhoton F E, Torrent J, et al. Iron (hydr) oxide crystallinity effects on soil aggregation. Soil Science Society of America Journal, 2003, 67(2): 606-611. [59] Liu D.Composition of clay minerals in aggregates and effect on aggregate stability of red soils under different erosion. Wuhan: Huazhong Agricultural University, 2007. 刘冬. 不同侵蚀度红壤团聚体中粘粒矿物分布特征及其对团聚体稳定性的影响. 武汉: 华中农业大学, 2007. [60] Wei S Y, Tan W F, Liu F.Advances on the study of mineral-humus interactions in soils. Soils and Fertilizers Sciences in China, 2009, (1): 1-6. 魏世勇, 谭文峰, 刘凡. 土壤腐殖质-矿物质交互作用的机制及研究进展. 中国土壤与肥料, 2009, (1): 1-6. |