[1] Zhu D F, Zhang Y P, Chen H Z, et al. Innovation and practice of high-yield rice cultivation technology in China. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. 朱德峰, 张玉屏, 陈惠哲, 等. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17): 3404-3414. [2] Chen S J, Wang Y L, Zhang Z, et al. Factors influencing teliospore germination of Neovossia horrida and screening of sporulation medium of N. horrida. Acta Agriculturae Zhejiangensis, 2011, 23(3): 572-576. 陈胜军, 王艳丽, 张震, 等. 稻粒黑粉菌冬孢子萌发影响因素及其产孢培养基的筛选. 浙江农业学报, 2011, 23(3): 572-576. [3] Tao J F, Zhou K D, Zhu J Q.The process of rice sterile line infected by Tilletia horrida. Southwest China Journal of Agricultural Sciences, 1998, 11(2): 68-72. 陶家凤, 周开达, 朱建清. 稻粒黑粉菌对水稻不育系的侵染过程. 西南农业学报, 1998, 11(2): 68-72. [4] Chen Y, Yang X, Liang Z R, et al. A rapid and simple extraction method for plant pathogenic fungi. Scientific Reports, 2016, 6: 1-8. [5] Wang A J, Yin D S, Fu R, et al. Evaluation of resistance to rice kernel smut in seventy-eight species of rice sterile lines. Acta Phytopathologica Sinica, 2018, 48(2): 207-212. 王爱军, 殷得所, 富蓉, 等. 78个水稻不育系对稻粒黑粉病的抗性评价. 植物病理学报, 2018, 48(2): 207-212. [6] Wang Z, Gerstein M, Snyder M.RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 2010, 10(1): 57-63. [7] Tang C, Zhang H Y, Wang T, et al. Differentiating transcriptomic patterns and functional analysis of Hansenula anomala during cultivation. Food and Fermentation Industries, 2019, 45(4): 1-6. 唐朝, 张寒玉, 王婷, 等. 基于转录组测序的异常汉逊酵母菌不同发酵时期差异表达基因功能分析. 食品与发酵工业, 2019, 45(4): 1-6. [8] Thatcher L F, Williams A H, Gary G, et al. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics, 2016, 17(1): 860. [9] Han Y Q, Han Y H, Zhang C L, et al. Transcriptomic analysis of early interaction between rice young spikelets and Ustilaginoidea virens. Acta Phytopathological Sinica, 2019, 49(3): 296-305. 韩彦卿, 韩渊怀, 张春来, 等. 水稻幼穗与Ustilaginoidea virens互作早期的转录组分析. 植物病理学报, 2019, 49(3): 296-305. [10] Xiao J, Jin X, Jia X, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 2013, 14(1): 1-19. [11] Guo C G, Li S G, Wei Z M, et al. A simple and high quality of total RNA extraction method for Pholiota adiposa. Acta Agriculturae Boreali-Sinica, 2016, 31(S1): 75-79. [12] Wang A J, Pan L X, Wang N, et al. The pathogenic mechanism of Tilletia horrida as revealed by comparative and functional genomics. Scientific Reports, 2018, 8(1): 15413. [13] Benjamini Y, Hochberg Y.Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statal Society: Series B (Methodological), 1995, 57(1): 289-300. [14] Benjamini Y, Yektieli D.The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 2001, 29(4): 1165-1188. [15] Ernst J, Bar-Joseph Z.STEM: A tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7(1): 1-11. [16] Wang L K, Feng Z X, Wang X, et al. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010, 26: 136-138. [17] Mao X, Cai T, Olyarchuk J G, et al. Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21(19): 3787-3793. [18] Wang L G, Li L, Peng Y H.Advance of research on pathogenicity genes of phytopathogenic fungi. Journal of South China Normal University (Natural Science), 2003, (1): 135-142. 王利国, 李玲, 彭永宏. 植物真菌致病基因的研究进展. 华南师范大学学报(自然科学版), 2003, (1): 135-142. [19] Cantarel B L, Coutinho P M, Rancurel C, et al. The Carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 2009, 37(Database Issue): 233-238. [20] Liu X H, Lu J P, Zhang L, et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryotic Cell, 2007, 6(6): 997-1005. [21] Liu L P, Yan Y Q, Huang J B, et al. A novel MFS transporter gene ChMfs1 is important for hyphal morphology, conidiation, and pathogenicity in colletotrichum higginsianum. Frontiers in Microbiology, 2017, 8: 1953. [22] Skamnioti P, Gurr S J.Cutinase and hydrophobin interplay. Plant Signaling : Behavior, 2008, 3(4): 248-250. [23] Zhou X G, Su Y, Li C Y, et al. Pathogenicity analysis of secretory protein of the rice blast fungus under nitrogen starvation. Acta Phytopathologica Sinica, 2009, 39(5): 491-500. 周晓罡, 苏源, 李成云, 等. 氮胁迫条件下稻瘟病菌分泌蛋白致病性分析. 植物病理学报, 2009, 39(5): 491-500. [24] Leuthner B, Aichinger C, Oehmen E, et al. A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Molecular Genetics and Genomics, 2005, 272(6): 639-650. [25] Peng C, Chen H L, Wang J W, et al. Cloning and expression analysis of a P-ATPase gene MoCTA3 in rice blast pathogen Magnaporthe oryzae. Jiangsu Journal of Agricultural Sciences, 2012, 28(3): 492-496. 彭陈, 陈洪亮, 王俊伟, 等. 稻瘟菌P-ATPase基因MoCTA3的克隆及表达分析. 江苏农业学报, 2012, 28(3): 492-496. [26] Lin H C.Functional analysis of chitinase gene Pst_23943 in Puccinia striiformis f. sp. tritici. Xianyang: Northwest A : F University, 2019. 林颢丞. 小麦条锈菌几丁质酶基因Pst_23943的功能分析. 咸阳: 西北农林科技大学, 2019. [27] Wang S, Chen G J, Zhang H Q, et al. Carbohydrate-active enzyme (CAZy) database and its new prospect. Chinese Journal of Bioprocess Engineering, 2014, 12(1): 102-108. 王帅, 陈冠军, 张怀强, 等. 碳水化合物活性酶数据库(CAZy)及其研究趋势. 生物加工过程, 2014, 12(1): 102-108. [28] Martin-Udiroz M.Role of chitin synthase genes in Fusarium oxysporum. Microbiology, 2004, 150(10): 3175-3187. [29] Kubo Y.Function of peroxisomes in plant-pathogen interactions. Sub-cellular Biochemistry, 2013, 69: 329-345. [30] Kimura A.Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell, 2001, 13(8): 1945-1957. [31] Ramos-Pamplona M, Naqvi N I.Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Molecular Microbiology, 2006, 61(1): 61-75. [32] Zheng A P, Lin R M, Zhang D H, et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 2013, 4: 1424. [33] Liu Y F, Chen Z Y, Yu W Y, et al. Primary study on effect of secreted proteins of Magnaporthe oryzae during infection. Chinese Journal of Rice Science, 2011, 25(4): 452-454. 刘永锋, 陈志谊, 俞文渊, 等. 稻瘟病菌分泌蛋白质在致病过程中的作用初探. 中国水稻科学, 2011, 25(4): 452-454. [34] Ren W C, Zhang Z H, Shao W Y, et al. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea. Molecular Plant Pathology, 2017, 18(2): 238-248. [35] Todd R B, Lockington R A, Kelly J M.The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. MGG-Molecular and General Genetics, 2000, 263(4): 561-570. [36] Matar K A O, Chen X F, Chen D J, et al. WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae. Current Genetics, 2016, 63(4): 685-696. |