草业学报 ›› 2021, Vol. 30 ›› Issue (2): 115-123.DOI: 10.11686/cyxb2020286
王桔红1(), 许泽璇1, 陈文2, 朱慧1(), 黄龙军1, 李佳维1
收稿日期:
2020-06-23
修回日期:
2020-09-27
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
朱慧
作者简介:
E-mail: gdzhuhui@126.com基金资助:
Ju-hong WANG1(), Ze-xuan XU1, Wen CHEN2, Hui ZHU1(), Long-jun HUANG1, Jia-wei LI1
Received:
2020-06-23
Revised:
2020-09-27
Online:
2021-02-20
Published:
2021-01-19
Contact:
Hui ZHU
摘要:
外来种入侵使入侵地物种多样性水平下降、生态系统稳定遭到破坏。通过测定不同入侵程度的喜旱莲子草根茎叶以及土壤C、N、P含量及其化学计量比,探查喜旱莲子草各器官化学元素含量及比率的变化;同时,对喜旱莲子草与共存种银花苋化学计量特征进行比较,以揭示喜旱莲子草的营养策略及其成功入侵机制。结果表明:1)随喜旱莲子草的入侵,其生境土壤元素含量增加;土壤速效磷(AP)含量为重度入侵>中度和轻度入侵地,高营养生境尤其是高AP生境有益于喜旱莲子草的快速生长和扩张;2)3种程度入侵的喜旱莲子草各器官N、P含量均为叶>根和茎,植物将更多的N、P元素分配到叶。3)喜旱莲子草各器官N含量、叶P含量均显著大于银花苋,显示其对土壤N、P有较强的吸收和利用率;4)银花苋各器官C∶N值显著大于3种入侵程度的喜旱莲子草各器官;3种入侵程度的喜旱莲子草叶N∶P值显著小于银花苋叶,银花苋根N∶P值、茎N∶P值显著小于3种入侵程度的喜旱莲子草。喜旱莲子草通过对资源的吸收和利用以及地上部分的快速生长增大竞争力,而共存种银花苋主要通过地下部分的快速生长增大竞争力。
王桔红, 许泽璇, 陈文, 朱慧, 黄龙军, 李佳维. 不同入侵程度喜旱莲子草化学计量特征及其与共存种银花苋的比较[J]. 草业学报, 2021, 30(2): 115-123.
Ju-hong WANG, Ze-xuan XU, Wen CHEN, Hui ZHU, Long-jun HUANG, Jia-wei LI. The stoichiometric characteristics of Alternanthera philoxeroides with different invasive degrees and their comparison with the coexisting species Gomphrena celosioides[J]. Acta Prataculturae Sinica, 2021, 30(2): 115-123.
土层 Soil layer(cm) | 生境 Habitats | 有机碳 Organic carbon (mg·g-1) | 全氮 Total nitrogen (mg·g-1) | 全磷 Total phosphorus (mg·g-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 伴生种Companion | 7.351±4.045Ad | 0.525±0.274Aa | 0.435±0.081Ab | 27.819±9.889Ad | 10.919±1.155Ab |
轻度入侵Mild | 17.790±2.810Ab | 1.091±0.787Aa | 1.071±0.390Aa | 109.579±3.338Ab | 203.828±135.385Aab | |
中度入侵Moderate | 22.957±3.016Aa | 1.141±0.029Aa | 0.824±0.099Aa | 120.663±5.362Aa | 154.461±74.392Aab | |
重度入侵 Heavy | 13.253±1.763Ac | 0.945±0.226Aa | 0.910±0.181Aa | 45.022±7.273Ac | 349.383±219.867Aa | |
10~20 | 伴生种Companion | 6.990±2.542Ad | 0.326±0.127Ab | 0.433±0.042Ab | 25.259±10.859Ab | 13.873±8.303Ac |
轻度入侵Mild | 16.064±2.150Ab | 0.772±0.128Aa | 0.911±0.233Aa | 70.440±25.630Bab | 128.194±60.606Ab | |
中度入侵Moderate | 18.773±7.684Aa | 0.866±0.158Ba | 0.952±0.417Aa | 78.274±17.142Ba | 184.092±89.108Ab | |
重度入侵 Heavy | 11.313±0.623Bc | 0.856±0.096Aa | 0.873±0.190Aa | 57.834±51.155Aab | 316.593±108.248Aa |
表1 喜旱莲子草与其伴生种(银花苋)生境土壤C、N、P含量
Table 1 C, N and P content in soils of A. philoxeroides and their companion
土层 Soil layer(cm) | 生境 Habitats | 有机碳 Organic carbon (mg·g-1) | 全氮 Total nitrogen (mg·g-1) | 全磷 Total phosphorus (mg·g-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) |
---|---|---|---|---|---|---|
0~10 | 伴生种Companion | 7.351±4.045Ad | 0.525±0.274Aa | 0.435±0.081Ab | 27.819±9.889Ad | 10.919±1.155Ab |
轻度入侵Mild | 17.790±2.810Ab | 1.091±0.787Aa | 1.071±0.390Aa | 109.579±3.338Ab | 203.828±135.385Aab | |
中度入侵Moderate | 22.957±3.016Aa | 1.141±0.029Aa | 0.824±0.099Aa | 120.663±5.362Aa | 154.461±74.392Aab | |
重度入侵 Heavy | 13.253±1.763Ac | 0.945±0.226Aa | 0.910±0.181Aa | 45.022±7.273Ac | 349.383±219.867Aa | |
10~20 | 伴生种Companion | 6.990±2.542Ad | 0.326±0.127Ab | 0.433±0.042Ab | 25.259±10.859Ab | 13.873±8.303Ac |
轻度入侵Mild | 16.064±2.150Ab | 0.772±0.128Aa | 0.911±0.233Aa | 70.440±25.630Bab | 128.194±60.606Ab | |
中度入侵Moderate | 18.773±7.684Aa | 0.866±0.158Ba | 0.952±0.417Aa | 78.274±17.142Ba | 184.092±89.108Ab | |
重度入侵 Heavy | 11.313±0.623Bc | 0.856±0.096Aa | 0.873±0.190Aa | 57.834±51.155Aab | 316.593±108.248Aa |
器官Organs | 入侵程度Invasion degrees | 有机碳Organic carbon | 氮Nitrogen | 磷Phosphorus |
---|---|---|---|---|
根Root | 伴生种Companion | 438.032±17.358Aa | 9.043±1.771Bb | 1.800±0.133Aab |
轻度Mild | 411.372±8.587Ab | 18.173±3.634Ca | 1.475±0.345Bb | |
中度Moderate | 408.868±8.022Ab | 15.134±1.565Ba | 1.934±0.317Ba | |
重度 Heavy | 401.256±13.615Ab | 16.763±2.887Ba | 1.845±0.113Ba | |
茎Stem | 伴生种Companion | 377.476±11.463Ba | 10.603±0.385Bc | 1.609±0.385Ab |
轻度Mild | 344.025±8.410Bb | 22.833±2.145Ba | 1.759±0.640Bab | |
中度Moderate | 364.329±28.565Bab | 19.122±6.008Bab | 2.256±0.258ABa | |
重度 Heavy | 383.569±28.414Aa | 16.556±2.375Bb | 1.626±0.327Bb | |
叶Leaf | 伴生种Companion | 368.612±9.735Bab | 23.312±1.544Ac | 0.593±0.153Bb |
轻度Mild | 349.321±22.552Bb | 39.579±2.843Aa | 2.644±0.268Aa | |
中度Moderate | 357.891±21.205Bb | 37.641±3.314Aa | 2.805±0.631Aa | |
重度 Heavy | 390.837±18.053Aa | 34.054±1.741Ab | 2.535±0.187Aa |
表2 3种入侵程度的喜旱莲子草与伴生种(银花苋)各器官C、N、P含量
Table 2 C, N, P contents in organs of A. philoxeroides with different invasive degrees and their companion (mg·g-1)
器官Organs | 入侵程度Invasion degrees | 有机碳Organic carbon | 氮Nitrogen | 磷Phosphorus |
---|---|---|---|---|
根Root | 伴生种Companion | 438.032±17.358Aa | 9.043±1.771Bb | 1.800±0.133Aab |
轻度Mild | 411.372±8.587Ab | 18.173±3.634Ca | 1.475±0.345Bb | |
中度Moderate | 408.868±8.022Ab | 15.134±1.565Ba | 1.934±0.317Ba | |
重度 Heavy | 401.256±13.615Ab | 16.763±2.887Ba | 1.845±0.113Ba | |
茎Stem | 伴生种Companion | 377.476±11.463Ba | 10.603±0.385Bc | 1.609±0.385Ab |
轻度Mild | 344.025±8.410Bb | 22.833±2.145Ba | 1.759±0.640Bab | |
中度Moderate | 364.329±28.565Bab | 19.122±6.008Bab | 2.256±0.258ABa | |
重度 Heavy | 383.569±28.414Aa | 16.556±2.375Bb | 1.626±0.327Bb | |
叶Leaf | 伴生种Companion | 368.612±9.735Bab | 23.312±1.544Ac | 0.593±0.153Bb |
轻度Mild | 349.321±22.552Bb | 39.579±2.843Aa | 2.644±0.268Aa | |
中度Moderate | 357.891±21.205Bb | 37.641±3.314Aa | 2.805±0.631Aa | |
重度 Heavy | 390.837±18.053Aa | 34.054±1.741Ab | 2.535±0.187Aa |
图1 不同入侵程度的喜旱莲子草与其伴生种化学计量比大写字母表示同一入侵程度各器官之间C、N、P元素比的差异性,小写字母表示不同入侵程度之间C、N、P元素比的差异性。Uppercase letters indicate the difference of C, N and P ratios of roots, stems, and leaves of the same invasive degree. Lowercase letters indicate the difference of C, N and P ratios of different invasive roots (or stems and leaves).
Fig.1 Element ratios of leaf, root and stem of A.philoxeroides with three invasion degrees and their companion
土层 Soil layer (cm) | 土壤营养 Soil nutrition | 有机碳Organic carbon | 氮 Nitrogen | 磷Phosphorus | ||||||
---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | ||
0~10 | 有机碳Organic carbon | -0.433 | -0.246 | -0.384 | 0.554* | 0.712** | 0.804** | 0.084 | 0.516* | 0.748** |
全氮Total nitrogen | -0.341 | -0.294 | -0.434 | 0.104 | 0.299 | 0.355 | 0.085 | 0.193 | 0.468* | |
全磷Total phosphorus | -0.678** | -0.327 | -0.002 | 0.778** | 0.686** | 0.763** | -0.262 | 0.319 | 0.655** | |
速效氮Available nitrogen | -0.383 | -0.463* | -0.570* | 0.546* | 0.817** | 0.840** | -0.127 | 0.393 | 0.735** | |
速效磷Available phosphorus | -0.641** | -0.154 | 0.273 | 0.441 | 0.303 | 0.393 | -0.117 | 0.163 | 0.521* | |
10~20 | 有机碳Organic carbon | -0.400 | -0.287 | -0.313 | 0.480* | 0.609** | 0.718** | 0.180 | 0.452 | 0.685** |
全氮Total nitrogen | -0.692** | -0.015 | 0.283 | 0.780** | 0.594** | 0.754** | -0.060 | 0.160 | 0.828** | |
全磷Total phosphorus | -0.484* | -0.239 | -0.063 | 0.466* | 0.480* | 0.532* | -0.006 | 0.262 | 0.592** | |
速效氮Available nitrogen | -0.570* | -0.222 | -0.115 | 0.352 | 0.507* | 0.607** | -0.014 | 0.132 | 0.603** | |
速效磷Available phosphorus | -0.620** | 0.171 | 0.525* | 0.529* | 0.262 | 0.411 | 0.151 | -0.023 | 0.526* |
表3 植物各器官元素含量与其土壤营养之间相关性
Table 3 Pearson correlation between element contents in plant organs and soil nutrition (mg·g-1)
土层 Soil layer (cm) | 土壤营养 Soil nutrition | 有机碳Organic carbon | 氮 Nitrogen | 磷Phosphorus | ||||||
---|---|---|---|---|---|---|---|---|---|---|
根 Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | ||
0~10 | 有机碳Organic carbon | -0.433 | -0.246 | -0.384 | 0.554* | 0.712** | 0.804** | 0.084 | 0.516* | 0.748** |
全氮Total nitrogen | -0.341 | -0.294 | -0.434 | 0.104 | 0.299 | 0.355 | 0.085 | 0.193 | 0.468* | |
全磷Total phosphorus | -0.678** | -0.327 | -0.002 | 0.778** | 0.686** | 0.763** | -0.262 | 0.319 | 0.655** | |
速效氮Available nitrogen | -0.383 | -0.463* | -0.570* | 0.546* | 0.817** | 0.840** | -0.127 | 0.393 | 0.735** | |
速效磷Available phosphorus | -0.641** | -0.154 | 0.273 | 0.441 | 0.303 | 0.393 | -0.117 | 0.163 | 0.521* | |
10~20 | 有机碳Organic carbon | -0.400 | -0.287 | -0.313 | 0.480* | 0.609** | 0.718** | 0.180 | 0.452 | 0.685** |
全氮Total nitrogen | -0.692** | -0.015 | 0.283 | 0.780** | 0.594** | 0.754** | -0.060 | 0.160 | 0.828** | |
全磷Total phosphorus | -0.484* | -0.239 | -0.063 | 0.466* | 0.480* | 0.532* | -0.006 | 0.262 | 0.592** | |
速效氮Available nitrogen | -0.570* | -0.222 | -0.115 | 0.352 | 0.507* | 0.607** | -0.014 | 0.132 | 0.603** | |
速效磷Available phosphorus | -0.620** | 0.171 | 0.525* | 0.529* | 0.262 | 0.411 | 0.151 | -0.023 | 0.526* |
1 | Reich P B, Tjoelker M G, Machado J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006, 439(7075): 457-461. |
2 | Wu T G, Chen B F, Xiao Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China. Chinese Journal of Plant Ecology, 2010, 34(1): 58-63. |
吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学. 植物生态学报, 2010, 34(1): 58-63. | |
3 | Yang H M, Wang D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 2011, 20(2): 244-252. |
杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 2011, 20(2): 244-252. | |
4 | Vitousek P. Nutrient cycling and nutrient use efficiency. American Naturalist, 1982, 119(4): 553-572. |
5 | Hu C C, Liu X Y, Lei Y B, et al. Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna. Chinese Journal of Plant Ecology, 2016, 40(11): 1145-1153. |
胡朝臣, 刘学炎, 类延宝, 等. 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征. 植物生态学报, 2016, 40(11): 1145-1153. | |
6 | She S F ,Hu Y F ,Shu X Y. et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in northwestern Sichuan, China. Acta Prataculturae Sinica, 2018, 27(4): 123-130. |
佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征. 草业学报, 2018, | |
27(4): 123-130. | |
7 | González A L, Kominoski J S, Danger M, et al. Can ecological stoichiometry help explain patterns of biological invasions. Oikos, 2010, 119(5): 779-790. |
8 | Daehler C C. Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology, 1998, 12(5): 553-568. |
9 | Meyer J Y. Observations on the reproductive biology of Miconia calvescens DC (Melastomataceae), an alien invasive tree on the island of Tahiti (South Pacific Ocean). Biotropica, 1998, 30(4): 609-624. |
10 | Ni G Y, Zhao P, Huang Q Q, et al. Exploring the novel weapons hypothesis with invasive plant species in China. Allelopathy Journal, 2012, 29(2): 199-214. |
11 | Pan Y M, Tang S C, Wei C Q, et al. Allelopathic effects of aqueous extracts from native Vitex negundo on the growth and photosynthesis traits of Eupatorium odoratum. Chinese Journal of Ecology, 2013, 32(2): 351-357. |
潘玉梅, 唐赛春, 韦春强, 等. 土著植物黄荆条水提取液对飞机草生长和光合特性的化感效应. 生态学杂志, 2013, 32(2): 351-357. | |
12 | Wang B S, Hao Y R, Wang C W, et al. Biological invasion and invasion ecology. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005(3): 75-77. |
王伯荪, 郝艳茹, 王昌伟, 等. 生物入侵与入侵生态学. 中山大学学报(自然科学版), 2005(3): 75-77. | |
13 | Wang W Q, Zhao Z M, Wang J J, et al. Research progress on ecology of biological invasion. Journal of Anhui Agricultural Sciences, 2009, 37(25): 12153-12155. |
王文琪, 赵志模, 王进军, 等. 生物入侵生态学研究进展. 安徽农业科学, 2009, 37(25): 12153-12155. | |
14 | Zhao Z H, Su M, Li Z H, et al. Invasion ecology of alien species. Journal of Plant Protection, 2019, 46(1): 1-5. |
赵紫华, 苏敏, 李志红, 等. 外来物种入侵生态学. 植物保护学报, 2019, 46(1): 1-5. | |
15 | Lu X M, Zhou C F, An S Q, et al. Phenotypic plasticity, allometry and invasiveness of plants. Chinese Journal of Ecology, 2007(9): 1438-1444. |
陆霞梅, 周长芳, 安树青, 等. 植物的表型可塑性、异速生长及其入侵能力. 生态学杂志, 2007(9): 1438-1444. | |
16 | Liu M C, Wei C Q, Tang S C, et al. Bionomics of two invasive weeds, Bidens alba and B. pilosa, and their native congeners grown under different nutrient levels. Journal of Biosafety, 2012, 21(1): 32-40. |
刘明超, 韦春强, 唐赛春, 等. 不同土壤养分水平下2种外来鬼针草和近缘本地种的比较研究. 生物安全学报, 2012, 21(1): 32-40. | |
17 | Liu M X. Plant community composition and nitrogen-phosphorus stoichiometry along a slope aspect gradients in a alpine meadow. Lanzhou: Lanzhou University, 2013. |
刘旻霞. 高寒草甸坡向梯度上植物群落组成及其氮磷化学计量学特征的研究. 兰州: 兰州大学, 2013. | |
18 | Jiang G B, Zeng R S. Damages and control measures of invasive plants. Journal of Anhui Agricultural Sciences, 2006, 34(2): 273-274, 280. |
江贵波, 曾任森. 外来入侵植物的危害及防治. 安徽农业科学, 2006,34(2): 273-274, 280. | |
19 | Li Z Y, Xie Y. Invasive species from China. Beijing: China Forestry Press, 2002: 11. |
李振宇, 解焱. 中国外来入侵种. 北京: 中国林业出版社, 2002: 11. | |
20 | Weng B Q, Lin S, Wang Y X. Discussion on adaptability and invasion mechanisms of Alternanthera philoxeroides in China. Acta Ecologica Sinica, 2006, 26(7): 2373-2381. |
翁伯琦, 林嵩, 王义祥. 空心莲子草在我国的适应性及入侵机制. 生态学报, 2006, 26(7): 2373-2381. | |
21 | Zhang W Y, Pang J. Invasion mechanisms of Alternanthera philoxeroides and its control countermeasures. Crop Research, 2013, 27(3): 302-306. |
张文艳, 庞静. 空心莲子草的入侵机制及其防治对策. 作物研究, 2013, 27(3): 302-306. | |
22 | Wang Y, Li W H, Li D, et al. Research progress on invasion mechanism and prevention strategy of Alternanthera philoxeroides. Journal of Zhejiang A & F University, 2015, 32(4): 625-634. |
王颖, 李为花, 李丹, 等. 喜旱莲子草入侵机制及防治策略研究进展. 浙江农林大学学报, 2015, 32(4): 625-634. | |
23 | Ma J S. List of Invasive plants in China. Beijing: Higher Education Press, 2013. |
马金双. 中国入侵植物名录. 北京: 高等教育出版社, 2013. | |
24 | Xu H G, Qiang S, Han Z M, et al. The status and causes of alien species invasion in China. Biodiversity and Conservation, 2006, 15(9): 2893-2904. |
25 | Zhang C Y, Liu W, Xu Z F, et al. Responses of vegetative growth and photosynthesis to temperature in the invasive species Alternanthera philoxeroides and its indigenous congener A. sessilis. Journal of Tropical and Subtropical Botany, 2006, 14(4): 333-339. |
张彩云, 刘卫, 徐志防, 等. 入侵种喜旱莲子草和莲子草的营养生长和光合作用对温度的响应. 热带亚热带植物学报, 2006, 14(4): 333-339. | |
26 | Liu D S, Zhang X J, Zhou J S, et al. A preliminary study on diurnal courses of photosynthesis in an invasive species, Alternanthera philoxeroides, North China. Environmental Pollution & Control, 2007, 29(9): 671-673. |
刘大胜, 张学杰, 周俊山, 等. 外来入侵物种空心莲子草光合日变化初步研究. 环境污染与防治, 2007, 29(9): 671-673. | |
27 | Guo S L, Fang F, Huang H, et al. Studies on the reproduction and photosynthetic ecophysiology of the exotic invasive plant, Plantago virginica. Chinese Journal of Plant Ecology, 2004, 28(6): 787-793. |
郭水良, 方芳, 黄华, 等. 外来入侵植物北美车前繁殖及光合生理生态学研究. 植物生态学报, 2004, 28(6): 787-793. | |
28 | Hu T Y, Fang F, Guo S L, et al. Comparison of basic photosynthetic characteristics between exotic invasive weed Solidago canadensis and its companion species. Journal of Zhejiang University (Agriculture and Life Sciences), 2007, 33(4): 379-386. |
胡天印, 方芳, 郭水良, 等. 外来入侵种加拿大一枝黄花及其伴生植物光合特性研究. 浙江大学学报(农业与生命科学版), 2007, 33(4):379-386. | |
29 | Gu C F, Ye X Q, Wu M, et al. Effects of glyphosate on photosynthetic characteristics of an invasive plant Solidago canadensis and an indigenous plant Imperata cylindrica. Acta Ecologica Sinica, 2018, 38(8): 2743-2753. |
古春凤, 叶小齐, 吴明, 等. 草甘膦对入侵植物加拿大一枝黄花和伴生植物白茅光合特性的影响. 生态学报, 2018, 38(8): 2743-2753. | |
30 | Chang R Y, Wang R Q, Zhang Y R, et al. Invasion mechanism and integrated management of invasive plant Alternanthera philoxeroides. Journal of Ecology and Rural Environment, 2013, 29(1): 17-23. |
常瑞英, 王仁卿, 张依然, 等. 入侵植物空心莲子草的入侵机制及综合管理. 生态与农村环境学报, 2013, 29(1): 17-23. | |
31 | Su L, Zhu J S. Influence of extract from underground stem of Alternanthera philoxeroides on germination rate of several weeds seeds. Weed Science, 2003(4): 10-12. |
苏丽, 朱金松. 空心莲子草地下茎浸提液对几种常见杂草种子萌发率的影响. 杂草科学, 2003(4): 10-12. | |
32 | Zhang Y B, Liu A R, Wu Q. Allelopathic effects of aquatic lixivium and extracts from Alternanthera philoxeroides on the seed germination and early seedling growth of rice. Chinese Journal of Tropical Crops, 2009, 30(10): 1526-1531. |
张远兵, 刘爱荣, 吴倩. 空心莲子草水浸液对水稻种子萌发和幼苗生长的化感效应. 热带作物学报, 2009, 30(10): 1526-1531. | |
33 | Chang R Y. Effects of nutrient level and N:P ratio on the competition between invasive Alternanthera philoxeroides and non-invasive plants. Jinan: Shandong University, 2013. |
常瑞英. 养分水平和氮磷比对入侵植物空心莲子草与非入侵种竞争关系的影响. 济南: 山东大学, 2013. | |
34 | Wang Y. Impact of the exotic plant, Alternanthera philoxeroides (Mart.) Griseb. on soil ecosystem. Hefei: Anhui Agricultural University, 2016. |
王颖. 入侵植物喜旱莲子草对入侵地土壤生态系统的影响. 合肥: 安徽农业大学, 2016. | |
35 | Bao S D. The agro-chemical analysis of soil. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
36 | Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. |
刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71. | |
37 | Niu H B, Liu W X, Wan F H. Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica, 2007, 27(7): 3051-3060. |
牛红榜, 刘万学, 万方浩. 紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响. 生态学报, 2007, 27(7): 3051-3060. | |
38 | Qi X X, Zhang S Y, Lin F, et al. Effect of Flaveria bidentis invasion on plant community and soil microbial community of different invaded soil.Acta Ecologica Sinica, 2019, 39(22): 8472-8482. |
祁小旭, 张思宇, 林峰, 等. 黄顶菊对不同入侵地植物群落及土壤微生物群落的影响. 生态学报, 2019, 39(22): 8472-8482. | |
39 | Koerselman W, Meuleman A F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. |
40 | Drenovsky R E, Richards J H. Critical N:P values: Predicting nutrient deficiencies in desert shrublands. Plant and Soil, 2004, 259(1/2): 59-69. |
41 | Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408(6812): 578-580. |
42 | Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 2007, 28(12): 2665-2673. |
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 2007, 28(12): 2665-2673. | |
43 | Wang J H, Chen W, Zhang Y F, et al. Carbon, nitrogen, and phosphorus stoichiometry and nutrition strategy of invasive species Mikania micrantha with three invasive degrees and native species Siegesbeckia orientalis. Chinese Journal of Ecology, 2020, 39(6): 1994-2003. |
王桔红, 陈文, 张燕芳, 等. 不同入侵程度的微甘菊及本土种豨莶碳氮磷化学计量特征与营养策略.生态学杂志, 2020, 39(6): 1994-2003. | |
44 | Zeng D H, Chen G S. Ecological stoichiometry: A science to explore the complexity of living systems. Chinese Journal of Plant Ecology, 2005, 29(6): 141-153. |
曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索. 植物生态学报, 2005, 29(6): 141-153. | |
45 | Elser J J, Dobberfuhl D R, Mackay N A, et al. Organism size, life history, and N:P stoichiometry. BioScience, 1996, 46(9): 674-684. |
46 | Liu W D, Su J R, Li S F, et al. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province. Acta Ecologica Sinica, 2010, 30(23): 6581-6590. |
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征. 生态学报, 2010, 30(23): 6581-6590. | |
47 | Wardle D A, Walker L R, Bardgett R D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 2004, 305(5683): 509-513. |
48 | Vitousek P. Nutrient cycling and nutrient use efficiency. American Naturalist, 1982, 119(4): 553-572. |
[1] | 王振南, 赵梅, 杨燕, 李富宽, 王慧, 吕慎金. 苜蓿叶片氮、磷和钾养分重吸收与化学计量比的偶联关系[J]. 草业学报, 2019, 28(11): 177-183. |
[2] | 周晓兵, 陶冶, 张元明. 塔克拉玛干沙漠南缘荒漠绿洲过渡带不同土地利用影响下优势植物化学计量特征[J]. 草业学报, 2018, 27(5): 15-26. |
[3] | 叶良涛,钱家忠,左胜鹏,李蜀萍,陈雅琼. 不同营养水体对喜旱莲子草化感抗藻的影响[J]. 草业学报, 2012, 21(1): 279-284. |
[4] | 张震,徐丽,朱晓敏. 喜旱莲子草对不同生境植物群落多样性的影响[J]. 草业学报, 2010, 19(4): 10-15. |
[5] | 江小雷,岳静,张卫国,柳斌2. 生物多样性,生态系统功能与时空尺度[J]. 草业学报, 2010, 19(1): 219-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||