草业学报 ›› 2021, Vol. 30 ›› Issue (2): 102-114.DOI: 10.11686/cyxb2020095
收稿日期:
2020-03-06
修回日期:
2020-04-20
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
伏兵哲
作者简介:
E-mail: E-mail: fbzhe19 @163.com基金资助:
Bai-ping SHA(), Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU
Received:
2020-03-06
Revised:
2020-04-20
Online:
2021-02-20
Published:
2021-01-19
Contact:
Bing-zhe FU
摘要:
为探讨滴灌条件下水肥互作模式对紫花苜蓿生产性能及营养品质的影响,设置4个水分梯度(W1、W2、W3、W4)和5个肥料梯度(F1、F2、F3、F4、F5),采用裂区试验设计,对水肥耦合条件下苜蓿生长性能、干草产量及品质进行测定,研究结果表明:适当的灌水施肥能显著提高紫花苜蓿株高、生长速度和分枝数,促进干草产量的形成和营养物质的积累。增大灌水量,灌溉水分利用效率减小,偏肥料生产力先增加后减小;增大施肥量,偏肥料生产力减小,灌溉水分利用效率先增加后减小。通过灰色关联度和模糊相似优先比评价分析可知,株高、生长速度和二级分枝数对干草产量的贡献较大,一级分枝数和叶茎比对干草产量的贡献较小;W3F2的水肥模式能够获得较高的干草产量(19831.83 kg·hm-2)和蛋白含量(19.27%),还有利于提高灌溉水分利用效率(3.8 kg·m-3)和肥料偏生产力(146.9 kg·kg-1)。回归寻优模型表明滴灌条件下紫花苜蓿生产最适宜的水肥范围为:灌水量6000~6500 m3· hm-2,施肥量为250~320 kg· hm-2。
沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114.
Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district[J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114.
土层深度 Soil depth (cm) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium(mg·kg-1) | 有机质 Organic matter (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~20 | 1.18 | 0.75 | 19.48 | 106.53 | 9.85 | 77.23 | 17.73 |
20~40 | 1.08 | 0.72 | 20.00 | 69.45 | 8.16 | 64.38 | 17.48 |
40~60 | 0.96 | 0.60 | 19.55 | 89.96 | 7.25 | 60.60 | 15.48 |
表1 试验地土壤理化性质
Table 1 Physical and chemical properties of soil
土层深度 Soil depth (cm) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium(mg·kg-1) | 有机质 Organic matter (mg·kg-1) |
---|---|---|---|---|---|---|---|
0~20 | 1.18 | 0.75 | 19.48 | 106.53 | 9.85 | 77.23 | 17.73 |
20~40 | 1.08 | 0.72 | 20.00 | 69.45 | 8.16 | 64.38 | 17.48 |
40~60 | 0.96 | 0.60 | 19.55 | 89.96 | 7.25 | 60.60 | 15.48 |
月份 Month | 月均温Monthly average temperature (℃) | 月降水量Monthly precipitation (mm) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
三月 March | 7.8 | 7.4 | 6.2 | 4.1 | 3.1 | 4.2 |
四月 April | 10.1 | 9.2 | 8.3 | 9.4 | 11.8 | 10.5 |
五月 May | 15.2 | 16.8 | 14.2 | 7.4 | 9.8 | 12.4 |
六月 June | 23.5 | 18.4 | 20.0 | 11.4 | 14.5 | 11.3 |
七月 July | 25.3 | 19.8 | 22.7 | 95.1 | 98.9 | 104.5 |
八月 August | 24.8 | 25.5 | 25.6 | 38.4 | 42.3 | 45.4 |
九月 September | 20.5 | 25.7 | 24.8 | 7.2 | 9.0 | 10.7 |
十月 October | 11.1 | 12.4 | 14.4 | 7.5 | 8.2 | 6.0 |
总计 Total | - | - | - | 180.5 | 197.6 | 205.0 |
表2 试验地近3年气象状况
Table 2 Meteorological status in the past three years
月份 Month | 月均温Monthly average temperature (℃) | 月降水量Monthly precipitation (mm) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | |
三月 March | 7.8 | 7.4 | 6.2 | 4.1 | 3.1 | 4.2 |
四月 April | 10.1 | 9.2 | 8.3 | 9.4 | 11.8 | 10.5 |
五月 May | 15.2 | 16.8 | 14.2 | 7.4 | 9.8 | 12.4 |
六月 June | 23.5 | 18.4 | 20.0 | 11.4 | 14.5 | 11.3 |
七月 July | 25.3 | 19.8 | 22.7 | 95.1 | 98.9 | 104.5 |
八月 August | 24.8 | 25.5 | 25.6 | 38.4 | 42.3 | 45.4 |
九月 September | 20.5 | 25.7 | 24.8 | 7.2 | 9.0 | 10.7 |
十月 October | 11.1 | 12.4 | 14.4 | 7.5 | 8.2 | 6.0 |
总计 Total | - | - | - | 180.5 | 197.6 | 205.0 |
水分处理 Water treatment | 灌水量 Irrigation quantity (m3·hm-2) | 肥料处理 Fertilizer treatment | 肥料量Fertilizer (N-P2O5-K2O, kg·hm-2) |
---|---|---|---|
W1 | 4500 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W2 | 5250 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W3 | 6000 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W4 | 6750 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) |
表3 试验设计(试验因素)
Table 3 Test design (factors)
水分处理 Water treatment | 灌水量 Irrigation quantity (m3·hm-2) | 肥料处理 Fertilizer treatment | 肥料量Fertilizer (N-P2O5-K2O, kg·hm-2) |
---|---|---|---|
W1 | 4500 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W2 | 5250 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W3 | 6000 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) | ||
W4 | 6750 | F1 | 0 (0-0-0) |
F2 | 135 (30-45-60) | ||
F3 | 285 (75-90-120) | ||
F4 | 435 (120-135-180) | ||
F5 | 585 (165-180-240) |
项目 Items | 株高 Plant height (cm) | 生长速度 Growth rate (cm·d-1) | 一级分枝数 Number of first branches (No.) | 二级分枝数 Number of secondary branches (No.) | 叶茎比 Leaf stem ratio (%) |
---|---|---|---|---|---|
水分处理 Water treatment (W) | |||||
W1 | 86.10c | 1.79b | 102.43ab | 9.14c | 64a |
W2 | 86.32c | 1.81b | 103.23ab | 9.83ab | 67a |
W3 | 92.97a | 1.94a | 102.10b | 10.15a | 64a |
W4 | 87.21b | 1.82b | 107.41a | 9.65b | 61a |
肥料处理 Fertilizer treatment (F) | |||||
F1 | 82.22d | 1.71e | 111.32a | 9.44b | 69a |
F2 | 90.76a | 1.98a | 103.04b | 9.91a | 63bc |
F3 | 90.63a | 1.92b | 103.66b | 9.74ab | 65ab |
F4 | 89.51b | 1.84c | 98.32c | 9.69ab | 61c |
F5 | 87.63c | 1.78d | 102.60b | 9.68ab | 62bc |
年际 Year (Y) | |||||
2017 | 96.08a | 1.87a | 109.74a | 9.78a | 81a |
2018 | 86.38b | 1.73ab | 94.88b | 9.55ab | 63b |
2019 | 82.33c | 1.70b | 81.74c | 9.20b | 48c |
显著性检验(F值) Significance test (F value) | |||||
Y | 6.92* | 0.05NS | 28.03** | 1.42NS | 20.55** |
W | 38.17** | 3.05* | 1.95NS | 7.30** | 1.37NS |
F | 84.80** | 4.25** | 10.00** | 1.32NS | 4.18** |
Y×W | 3.19** | 1.27* | 1.07NS | 0.29NS | 0.81NS |
Y×F | 13.60** | 0.96* | 3.12NS | 0.43NS | 1.17NS |
W×F | 27.08** | 2.73** | 1.01NS | 1.11NS | 3.13** |
Y×W×F | 7.84** | 2.12* | 1.90* | 0.89NS | 1.69* |
表4 不同水、肥和种植年际对紫花苜蓿生长指标的影响
Table 4 Effects of different water fertilizer treatment on the plants high and growth rate of alfalfa
项目 Items | 株高 Plant height (cm) | 生长速度 Growth rate (cm·d-1) | 一级分枝数 Number of first branches (No.) | 二级分枝数 Number of secondary branches (No.) | 叶茎比 Leaf stem ratio (%) |
---|---|---|---|---|---|
水分处理 Water treatment (W) | |||||
W1 | 86.10c | 1.79b | 102.43ab | 9.14c | 64a |
W2 | 86.32c | 1.81b | 103.23ab | 9.83ab | 67a |
W3 | 92.97a | 1.94a | 102.10b | 10.15a | 64a |
W4 | 87.21b | 1.82b | 107.41a | 9.65b | 61a |
肥料处理 Fertilizer treatment (F) | |||||
F1 | 82.22d | 1.71e | 111.32a | 9.44b | 69a |
F2 | 90.76a | 1.98a | 103.04b | 9.91a | 63bc |
F3 | 90.63a | 1.92b | 103.66b | 9.74ab | 65ab |
F4 | 89.51b | 1.84c | 98.32c | 9.69ab | 61c |
F5 | 87.63c | 1.78d | 102.60b | 9.68ab | 62bc |
年际 Year (Y) | |||||
2017 | 96.08a | 1.87a | 109.74a | 9.78a | 81a |
2018 | 86.38b | 1.73ab | 94.88b | 9.55ab | 63b |
2019 | 82.33c | 1.70b | 81.74c | 9.20b | 48c |
显著性检验(F值) Significance test (F value) | |||||
Y | 6.92* | 0.05NS | 28.03** | 1.42NS | 20.55** |
W | 38.17** | 3.05* | 1.95NS | 7.30** | 1.37NS |
F | 84.80** | 4.25** | 10.00** | 1.32NS | 4.18** |
Y×W | 3.19** | 1.27* | 1.07NS | 0.29NS | 0.81NS |
Y×F | 13.60** | 0.96* | 3.12NS | 0.43NS | 1.17NS |
W×F | 27.08** | 2.73** | 1.01NS | 1.11NS | 3.13** |
Y×W×F | 7.84** | 2.12* | 1.90* | 0.89NS | 1.69* |
图1 不同水肥处理对3年累计株高的影响不同小写字母表示不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant differences at 0.05 level, the same below.
Fig.1 Effect of different water and fertilizer treatments on cumulative plant height in 3 years
项目Items | 干草产量Hay yield | 平均值 Average | ||
---|---|---|---|---|
2017 | 2018 | 2019 | ||
水分处理Water treatment (W) | ||||
W1 | 19700.31b | 13312.52c | 11943.59c | 15144.40c |
W2 | 20865.49a | 14158.75b | 12000.88c | 15353.31bc |
W3 | 21845.64a | 15364.84a | 13851.51a | 17113.99a |
W4 | 21377.08a | 14312.09b | 12574.54b | 15937.37b |
肥料处理 Fertilizer treatment (F) | ||||
F1 | 17371.94d | 12035.02d | 10514.41d | 13140.46c |
F2 | 23004.61a | 15382.69a | 13953.35a | 17588.55a |
F3 | 22512.69a | 14759.88bc | 13251.16a | 16924.57ab |
F4 | 20205.28c | 14821.65b | 12682.75c | 15819.89b |
F5 | 21641.13b | 14436.01c | 12561.49c | 15962.88b |
显著性检验(F值)Significance test (F value) | ||||
W | 82.22** | 68.86** | 37.92** | 15.65** |
F | 74.99** | 98.79** | 50.71** | 14.53** |
W×F | 22.01** | 32.03** | 14.57** | 0.64** |
表5 水肥耦合对不同年际干草产量的影响
Table 5 Effect of water and fertilizer coupling on grass hay yield in different years (kg·hm-2)
项目Items | 干草产量Hay yield | 平均值 Average | ||
---|---|---|---|---|
2017 | 2018 | 2019 | ||
水分处理Water treatment (W) | ||||
W1 | 19700.31b | 13312.52c | 11943.59c | 15144.40c |
W2 | 20865.49a | 14158.75b | 12000.88c | 15353.31bc |
W3 | 21845.64a | 15364.84a | 13851.51a | 17113.99a |
W4 | 21377.08a | 14312.09b | 12574.54b | 15937.37b |
肥料处理 Fertilizer treatment (F) | ||||
F1 | 17371.94d | 12035.02d | 10514.41d | 13140.46c |
F2 | 23004.61a | 15382.69a | 13953.35a | 17588.55a |
F3 | 22512.69a | 14759.88bc | 13251.16a | 16924.57ab |
F4 | 20205.28c | 14821.65b | 12682.75c | 15819.89b |
F5 | 21641.13b | 14436.01c | 12561.49c | 15962.88b |
显著性检验(F值)Significance test (F value) | ||||
W | 82.22** | 68.86** | 37.92** | 15.65** |
F | 74.99** | 98.79** | 50.71** | 14.53** |
W×F | 22.01** | 32.03** | 14.57** | 0.64** |
项目 Items | 粗蛋白 CP (%) | 酸性洗涤纤维 ADF (%) | 中性洗涤纤维NDF (%) | 相对饲喂价值RFV |
---|---|---|---|---|
水分处理 Water treatment (W) | ||||
W1 | 19.15b | 22.19ab | 40.23a | 166.71d |
W2 | 19.51a | 21.78b | 39.19c | 170.98a |
W3 | 19.12b | 22.30a | 39.73b | 167.94c |
W4 | 18.75c | 21.73b | 40.33a | 169.52b |
肥料处理Fertilizer treatment (F) | ||||
F1 | 18.93c | 22.39a | 39.98b | 167.57b |
F2 | 18.99c | 21.91a | 40.34a | 166.09bc |
F3 | 19.38a | 22.36a | 40.30a | 165.91c |
F4 | 19.20b | 22.08a | 39.68c | 172.13a |
F5 | 19.16b | 21.26b | 39.07d | 172.24a |
年限 Year (Y) | ||||
2017 | 19.70a | 21.38b | 37.69b | 180.40a |
2018 | 18.99b | 21.70b | 40.91a | 164.07b |
2019 | 18.70c | 22.93a | 41.02a | 161.90b |
显著性检验(F值) Significance test (F value) | ||||
Y | 61.56** | 69.71** | 79.91** | 96.53** |
W | 86.11** | 2.74NS | 58.68** | 26.67** |
F | 20.67** | 4.64** | 29.85** | 31.99** |
Y×W | 37.78** | 4.17** | 122.28** | 70.07** |
Y×F | 17.59** | 2.67** | 19.52** | 25.76** |
W×F | 13.56** | 4.27** | 8.11** | 17.44** |
Y×W×F | 24.44** | 3.49** | 23.26** | 21.32** |
表6 不同水、肥和种植年限对紫花苜蓿营养品质的影响
Table 6 Effects of different water, fertilizer and planting years on the nutritional quality of alfalfa
项目 Items | 粗蛋白 CP (%) | 酸性洗涤纤维 ADF (%) | 中性洗涤纤维NDF (%) | 相对饲喂价值RFV |
---|---|---|---|---|
水分处理 Water treatment (W) | ||||
W1 | 19.15b | 22.19ab | 40.23a | 166.71d |
W2 | 19.51a | 21.78b | 39.19c | 170.98a |
W3 | 19.12b | 22.30a | 39.73b | 167.94c |
W4 | 18.75c | 21.73b | 40.33a | 169.52b |
肥料处理Fertilizer treatment (F) | ||||
F1 | 18.93c | 22.39a | 39.98b | 167.57b |
F2 | 18.99c | 21.91a | 40.34a | 166.09bc |
F3 | 19.38a | 22.36a | 40.30a | 165.91c |
F4 | 19.20b | 22.08a | 39.68c | 172.13a |
F5 | 19.16b | 21.26b | 39.07d | 172.24a |
年限 Year (Y) | ||||
2017 | 19.70a | 21.38b | 37.69b | 180.40a |
2018 | 18.99b | 21.70b | 40.91a | 164.07b |
2019 | 18.70c | 22.93a | 41.02a | 161.90b |
显著性检验(F值) Significance test (F value) | ||||
Y | 61.56** | 69.71** | 79.91** | 96.53** |
W | 86.11** | 2.74NS | 58.68** | 26.67** |
F | 20.67** | 4.64** | 29.85** | 31.99** |
Y×W | 37.78** | 4.17** | 122.28** | 70.07** |
Y×F | 17.59** | 2.67** | 19.52** | 25.76** |
W×F | 13.56** | 4.27** | 8.11** | 17.44** |
Y×W×F | 24.44** | 3.49** | 23.26** | 21.32** |
年份 Year | 株高 Plant height | 生长速度 Growth rate | 一级分枝数 Number of first branches | 二级分枝数 Number of secondary branches | 叶茎比 Leaf-stem ratio |
---|---|---|---|---|---|
2017 | 0.3960 | 0.4041 | 0.3273 | 0.3418 | 0.2604 |
2018 | 0.4463 | 0.4656 | 0.3238 | 0.4325 | 0.3049 |
2019 | 0.4216 | 0.4730 | 0.3537 | 0.3828 | 0.3008 |
表7 不同年份紫花苜蓿生长性状与干草产量的灰色关联度分析
Table 7 Grey correlation analysis of alfalfa growth traits and hay yield in different years
年份 Year | 株高 Plant height | 生长速度 Growth rate | 一级分枝数 Number of first branches | 二级分枝数 Number of secondary branches | 叶茎比 Leaf-stem ratio |
---|---|---|---|---|---|
2017 | 0.3960 | 0.4041 | 0.3273 | 0.3418 | 0.2604 |
2018 | 0.4463 | 0.4656 | 0.3238 | 0.4325 | 0.3049 |
2019 | 0.4216 | 0.4730 | 0.3537 | 0.3828 | 0.3008 |
处理Treatments | IWUE | PFP | CP | RFV | 干草产量Hay yield | 相似程度Similarity | 排序Sorting |
---|---|---|---|---|---|---|---|
W1F1 | 15 | 17 | 15 | 7 | 20 | 74 | 18 |
W1F2 | 2 | 3 | 9 | 19 | 6 | 39 | 5 |
W1F3 | 3 | 8 | 8 | 18 | 10 | 47 | 8 |
W1F4 | 4 | 11 | 12 | 17 | 13 | 57 | 14 |
W1F5 | 5 | 14 | 14 | 2 | 11 | 46 | 7 |
W2F1 | 14 | 17 | 6 | 5 | 19 | 61 | 15 |
W2F2 | 6 | 4 | 3 | 12 | 8 | 33 | 3 |
W2F3 | 7 | 7 | 2 | 16 | 9 | 41 | 6 |
W2F4 | 9 | 12 | 1 | 1 | 15 | 38 | 4 |
W2F5 | 10 | 16 | 4 | 3 | 16 | 49 | 9 |
W3F1 | 17 | 17 | 17 | 11 | 17 | 79 | 19 |
W3F2 | 1 | 1 | 11 | 8 | 1 | 22 | 1 |
W3F3 | 8 | 5 | 5 | 9 | 2 | 29 | 2 |
W3F4 | 12 | 9 | 10 | 13 | 7 | 51 | 13 |
W3F5 | 11 | 13 | 16 | 6 | 4 | 50 | 11 |
W4F1 | 20 | 17 | 20 | 20 | 18 | 95 | 20 |
W4F2 | 13 | 2 | 19 | 14 | 3 | 51 | 12 |
W4F3 | 16 | 6 | 7 | 15 | 5 | 49 | 10 |
W4F4 | 18 | 10 | 13 | 10 | 12 | 63 | 16 |
W4F5 | 19 | 15 | 18 | 4 | 14 | 70 | 18 |
表8 不同水肥处理最优相似度排序
Table 8 Sorting statistics of optimal similarity of different water and fertilizer treatments
处理Treatments | IWUE | PFP | CP | RFV | 干草产量Hay yield | 相似程度Similarity | 排序Sorting |
---|---|---|---|---|---|---|---|
W1F1 | 15 | 17 | 15 | 7 | 20 | 74 | 18 |
W1F2 | 2 | 3 | 9 | 19 | 6 | 39 | 5 |
W1F3 | 3 | 8 | 8 | 18 | 10 | 47 | 8 |
W1F4 | 4 | 11 | 12 | 17 | 13 | 57 | 14 |
W1F5 | 5 | 14 | 14 | 2 | 11 | 46 | 7 |
W2F1 | 14 | 17 | 6 | 5 | 19 | 61 | 15 |
W2F2 | 6 | 4 | 3 | 12 | 8 | 33 | 3 |
W2F3 | 7 | 7 | 2 | 16 | 9 | 41 | 6 |
W2F4 | 9 | 12 | 1 | 1 | 15 | 38 | 4 |
W2F5 | 10 | 16 | 4 | 3 | 16 | 49 | 9 |
W3F1 | 17 | 17 | 17 | 11 | 17 | 79 | 19 |
W3F2 | 1 | 1 | 11 | 8 | 1 | 22 | 1 |
W3F3 | 8 | 5 | 5 | 9 | 2 | 29 | 2 |
W3F4 | 12 | 9 | 10 | 13 | 7 | 51 | 13 |
W3F5 | 11 | 13 | 16 | 6 | 4 | 50 | 11 |
W4F1 | 20 | 17 | 20 | 20 | 18 | 95 | 20 |
W4F2 | 13 | 2 | 19 | 14 | 3 | 51 | 12 |
W4F3 | 16 | 6 | 7 | 15 | 5 | 49 | 10 |
W4F4 | 18 | 10 | 13 | 10 | 12 | 63 | 16 |
W4F5 | 19 | 15 | 18 | 4 | 14 | 70 | 18 |
因变量Response variable (Y) | 回归方程Regression equation | R2 | P |
---|---|---|---|
灌溉水分利用效率IWUE (Y1) | Y1=-0.000000016X12-0.0000054X22-0.00000056X1X2+0.0016X1+0.0063X2-1.20 | 0.987 | 0.0200 |
肥料偏生产力 PFP (Y2) | Y2=-0.0000019X12-0.00076X22+0.023X1+0.41X2-39.69 | 0.998 | 0.0001 |
干草产量Hay yield (Y3) | Y3=-0.00062X12-0.031X22-0.0021X1X2+8.09X1+32.24X2-11687.80 | 0.996 | 0.0200 |
表9 灌水量和施肥量与灌溉水分利用效率、肥料偏生产力和干草产量之间的回归关系
Table 9 Regression relationship between irrigation and fertilization and irrigation water use efficiency, fertilizer partial productivity and hay yield
因变量Response variable (Y) | 回归方程Regression equation | R2 | P |
---|---|---|---|
灌溉水分利用效率IWUE (Y1) | Y1=-0.000000016X12-0.0000054X22-0.00000056X1X2+0.0016X1+0.0063X2-1.20 | 0.987 | 0.0200 |
肥料偏生产力 PFP (Y2) | Y2=-0.0000019X12-0.00076X22+0.023X1+0.41X2-39.69 | 0.998 | 0.0001 |
干草产量Hay yield (Y3) | Y3=-0.00062X12-0.031X22-0.0021X1X2+8.09X1+32.24X2-11687.80 | 0.996 | 0.0200 |
1 | Avci M A, Ozkose A, Tamkoc A. Determination of yield and quality characteristics of alfalfa(Medicago sativa L.)varieties grown in different locations. Journal of Animal &Veterinary Advances, 2013, 12(4): 487-490. |
2 | Altinok S, Yurtseven E, Avci S, et al. The effects of different irrigation water salinities and leaching ratios on green and dry forage yields of alfalfa (Medicago sativa L.). Agriculture & Forestry, 2015, 61(1): 85-90. |
3 | Sun Z H, Zhao J J, Xu H T, et al. Analysis of China’s alfalfa industry situation in 2019. China Dairy Cattle, 2019(10): 58-60. |
孙志华, 赵俊金, 许海涛, 等. 2019年我国苜蓿产业形势分析. 中国奶牛, 2019(10): 58-60. | |
4 | Tao S, Wang Y T, Zhang Q. Current situation of domestic alfalfa grass supply and demand and the influence of Sino-us trade friction and countermeasures. Animal Husbandry and Feed Science, 2019, 40(10): 46-50. |
陶莎, 王玉庭, 张峭. 国内苜蓿草供需现状及中美贸易摩擦带来的影响与对策. 畜牧与饲料科学, 2019, 40(10): 46-50. | |
5 | Atikur R M, Yong-Goo K, Iftekhar A, et al. Proteome analysis of alfalfa roots in response to water deficit stress. Journal of Integrative Agriculture, 2016, 15(6): 1275-1285. |
6 | Kou D, Su D R, Wu D, et al. Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 116-123. |
寇丹, 苏德荣, 吴迪, 等. 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报, 2014, 30(2): 116-123. | |
7 | Zhang Q B, Yu L, Lu W H, et al. Optimal irrigation regime improving yield and quality of alfalfa in year of sowing. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 116-122. |
张前兵, 于磊, 鲁为华, 等.优化灌溉制度提高苜蓿种植当年产量及品质. 农业工程学报, 2016, 32(23): 116-122. | |
8 | Wen X, Hou X Y, Mu H B. Effect of irrigation amount on alfalfa production capacity in Jingnan area. Pratacultural Science, 2010, 27(4): 73-77. |
文霞, 侯向阳, 穆怀彬. 灌水量对京南地区紫花苜蓿生产能力的影响. 草业科学, 2010, 27(4): 73-77. | |
9 | Hu Y. Study on water and fertilizer effect of subsurface drip irrigation and spatial variation of soil nutrient water under spray irrigation in alfalfa Ningxia. Ningxia: Ningxia University, 2017. |
胡优. 宁夏苜蓿地下滴灌水肥效应与喷灌土壤养分水分空间变异规律研究. 宁夏: 宁夏大学, 2017. | |
10 | Hannaway D, Shuler P E. Nitrogen fertilization in alfalfa production. Journal of Production Agriculture, 1993, 6(1): 80. |
11 | Raun W R, Johnson G V, Phillips S B, et al. Alfalfa yield response to nitrogen applied after each cutting. Soil Science Society of America Journal, 1999, 63(5): 1237-1243. |
12 | Zhang Q X, Song N P, Chen L, et al. Effects of different irrigation amount on growth characteristics and biomass of alfalfa. Water and Soil Conservation Bulletin, 2009, 29(2): 150-154. |
张庆霞, 宋乃平, 陈林, 等. 不同灌溉量对紫花苜蓿生长特性及生物量的影响. 水土保持通报, 2009, 29(2): 150-154. | |
13 | Ji J J. Effect of irrigation frequency and fertilization method on alfalfa yield and water and fertilizer utilization efficiency. Lanzhou: Lanzhou University, 2018. |
姬娇娇. 灌水频率与施肥方式对苜蓿产量及水肥利用效率的影响. 兰州: 兰州大学, 2018. | |
14 | Nuttall W F. Effect of N, P, and S fertilizers on alfalfa grown on three soil types in Northeastern Saskatchewan. I. Yield and soil tests 1. Agronomy Journal, 1985, 77(1): 41-46. |
15 | Sha B P, Li X, Xie Y Z, et al. Effects of plant-row ratio on seed yield and yield components of alfalfa under drip irrigation. Acta Agrestia Sinica, 2019, 27(3): 751-759. |
沙栢平, 李雪, 谢应忠, 等. 株行配比对滴灌苜蓿种子产量及其产量构成因子的影响. 草地学报, 2019, 27(3): 751-759. | |
16 | Zhang X Z. Crop physiology research method. Beijing: Agricultural Press, 1994. |
张宪政. 作物生理研究法. 北京: 农业出版社, 1994. | |
17 | NY/T1459-2007 Determination of acid detergent fiber (ADF) in feedstuffs. Beijing: China Standard Press. |
NY/T1459-2007. 饲料中酸性洗涤纤维(ADF)的测定. 北京: 中国标准出版社. | |
18 | GB/T20806-2006 Determination of neutral detergent fiber NDF in feedstuffs. Beijing: China Standard Press. |
GB/T20806-2006. 饲料中中性洗涤纤维NDF的测定. 北京: 中国标准出版社. | |
19 | Sun J P, Dong K H, Kui X Y, et al. Comparison of production performance and feeding value of introduced oat varieties in the agro-pastoral transition area. Acta Pratacultuae Sinica, 2017, 26(11): 222-230. |
孙建平, 董宽虎, 蒯晓妍, 等.晋北农牧交错区引进燕麦品种生产性能及饲用价值比较. 草业学报, 2017, 26(11): 222-230. | |
20 | Hu W, Zhang Y H, Li P, et al. Effects of water and nitrogen supply on production performance and water and nitrogen utilization efficiency of subsurface drip irrigation alfalfa. Acta Prataculturae Sinica, 2019, 28(2): 41-50. |
胡伟, 张亚红, 李鹏, 等. 水氮供应对地下滴灌紫花苜蓿生产性能及水氮利用效率的影响. 草业学报, 2019, 28(2): 41-50. | |
21 | Ke M, Zhu H, Liang W W, et al. Analysis of grey correlation between agronomic characters and yield and quality of Sudan grass. Pratacultural Science, 2016, 33(5): 949-955. |
柯梅, 朱昊, 梁维维, 等. 苏丹草农艺性状与产量、品质间的灰色关联度分析. 草业科学, 2016, 33(5): 949-955. | |
22 | Zhang F F, Yu L, Ma C H, et al. Effects of phosphorus application on the performance and quality of alfalfa under drip irrigation in oasis area. Acta Prataculturae Sinica, 2015, 24(10): 175-182. |
张凡凡, 于磊, 马春晖, 等. 绿洲区滴灌条件下施磷对紫花苜蓿生产性能及品质的影响. 草业学报, 2015, 24(10): 175-182. | |
23 | Peng S L, He B H, Wang R Z, et al. Effects of different fertilization patterns and tillage methods on purple soil fertility quality under natural rainfall conditions. Journal of Agricultural Resources and Environment, 2008, 35(4): 318-326. |
彭石磊, 何丙辉, 王润泽, 等. 自然降雨条件下不同施肥模式和耕作方式对坡耕地紫色土肥力质量的影响. 农业资源与环境学报, 2018, 35(4): 318-326. | |
24 | Hai Y. Rational use of soil fertilizer to promote sustainable development of agriculture. Modern Agriculture, 2013(11): 36. |
海英. 合理利用土壤肥料促进农业可持续发展. 现代农业, 2013(11): 36. | |
25 | Tao L. Effects of organic fertilizer on soil biological activity and microbial diversity in drip irrigation cotton fields instead of inorganic fertilizer. Shihezi: Shihezi University, 2013. |
陶磊. 有机肥替代部分无机肥对滴灌棉田土壤生物活性及微生物多样性的影响. 石河子: 石河子大学, 2013. | |
26 | Wei Z W, Fu X, Cao Z Z, et al. Relationship between growth characteristics and grass yield of alfalfa. Acta Prataculturae Sinica, 2007, 16(4): 1-8. |
魏臻武, 符昕, 曹致中, 等. 苜蓿生长特性和产草量关系的研究. 草业学报, 2007, 16(4): 1-8. | |
27 | Xu W T. Effects of water-fertilizer coupling on growth, yield and quality of Medicago sativa under subsurface drip irrigation. Beijing: Beijing Forestry University, 2014. |
徐文婷. 地下滴灌条件下水肥耦合对紫花苜蓿(Medicago sativa L.)生长、产量及品质的影响. 北京: 北京林业大学, 2014. | |
28 | Wang X Y, Yu Z W. Activities of enzymes related to nitrogenous metabolism and grain quality in wheat with different irrigation stage and rate. Acta Botanica Boreall-Occidentalla Sinica, 2009, 29(7): 1415-1420. |
王小燕,于振文.灌水时期和灌水量对小麦氮代谢相关酶活性和籽粒蛋白质品质的影响. 西北植物学报, 2009, 29(7): 1415-1420. | |
29 | Xiang L, Ren Y M, Kong J P, et al. Effects of different irrigation times and irrigation amount on barley yield and protein content. Rural Science and Technology, 2014(6): 15-16. |
向莉, 任玉梅, 孔建平, 等. 不同灌水次数及灌水量对大麦产量和蛋白质含量的影响. 农村科技, 2014(6): 15-16. | |
30 | Zu Y Q, Lin K H. Iteraction of nitrogen and potassium nutrition and its effect on yield and qualities of crop. Soil and Fertilizers, 2000(2): 3-7. |
祖艳群, 林克惠. 氮钾营养的交互作用及其对作物产量和品质的影响. 土壤肥料, 2000(2): 3-7. | |
31 | Zhang X G, Hu X T, Ran H, et al. Effects of water and fertilizer coupling on yield and utilization of greenhouse grapes. China Rural Water and Hydropower, 2019(1): 1-5. |
张兴国, 胡笑涛, 冉辉, 等. 水肥耦合对温室葡萄产量和水肥利用的影响. 中国农村水利水电, 2019(1): 1-5. | |
32 | Xing Y Y, Zhang F C, Wu L F, et al. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1): 110-121. |
邢英英, 张富仓, 吴立峰, 等. 基于番茄产量品质水肥利用效率确定适宜滴灌灌水施肥量. 农业工程学报, 2015, 31(S1): 110-121. |
[1] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[2] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[3] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[4] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
[5] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[6] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[7] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[8] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[9] | 覃凤飞, 李志华, 刘信宝, 渠晖, 平措卓玛, 洛松群措, 苏梦涵. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报, 2020, 29(9): 146-160. |
[10] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[11] | 伏兵哲, 周燕飞, 李雪, 倪彪, 高雪芹. 宁夏引黄灌区羊草水肥耦合效应研究[J]. 草业学报, 2020, 29(5): 98-108. |
[12] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[13] | 于浩然, 格根图, 王志军, 贾玉山, 连植, 贾鹏飞. 甲酸添加剂及青贮时间对紫花苜蓿青贮品质的影响[J]. 草业学报, 2020, 29(3): 89-95. |
[14] | 高丽敏, 苏晶, 田倩, 沈益新. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. |
[15] | 游永亮, 李源, 赵海明, 武瑞鑫, 刘贵波. 海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响[J]. 草业学报, 2020, 29(3): 137-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||